• Title/Summary/Keyword: Thermal bridging

Search Result 38, Processing Time 0.023 seconds

Experimental and Analytical Investigation of Structural Performance of Thermal Breaks for Parapets (외단열 파라펫용 열교차단 단열구조체의 구조실험과 해석)

  • An, Hyoseo;Lee, Gayoon;Yoo, Youngjong;An. Sanghee;Kim, Hyunggeun;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.345-353
    • /
    • 2024
  • In conventional construction practices, roof-parapet junction structures inevitably disrupt the insulation installation's continuity, leading to energy loss and thermal bridging. To address this issue, parapet thermal breaks were installed to interrupt the heat flow between the roof and the parapet, effectively preventing thermal bridging and energy loss and thereby reducing overall energy loss in buildings. This study equipped three experimental specimens with the developed parapet thermal breaks to verify their structural performance. These specimens were subjected to unidirectional loading under displacement-controlled conditions. The structural performance of these insulation structures was evaluated by comparing and analyzing the test results with corresponding analytical studies conducted using a finite element analysis program. In addition, five analytical models with varying parameters of the parapet thermal breaks were developed and compared against the baseline model. Consequently, the most efficient shape of the parapet thermal break was determined.

Synthesis and Crystal Structures of Zn(II)- and Mn(II)- Diphenyldicarboxylate Complexes with N-Donor Ligand

  • Koo, Bon Kweon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.321-326
    • /
    • 2016
  • Two new polymeric complexes, [Zn(dpa)(pyz)0.5]n (1; dpa = diphenate and pyz = pyrazine) and [Mn3(bpdc)3(py)4]n (2; bpdc = biphenyl-4,4'-dicarboxylate and py = pyridine) were successfully isolated by the hydro- and solvo-thermal technique, respectively. The complexes were characterized by elemental and thermal analysis, vibrational IR spectroscopy, and by single crystal x-ray structure determination. For 2, magnetic property was also investigated. Complex 1 is a two-dimensional layer structure consisting of a paddle-wheel building unit of Zn-dpa chains bridged by pyrazine. While, complex 2 consists of linear trimeric Mn3 cluster as building unit to form 3D network. In the complexes, dpa2− (1) and bpdc2−(2) ligands show a typical bis-monodendate bridging and two kinds of bridging modes; a typical bridging and chelating/bridging mode, respectively.

Thermal Analysis of Wall/Floor Intersections in Building Envelope

  • Ihm, Pyeongchan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 2004
  • Wall/floor intersection is important parts of a building envelope system. These intersections can be sources of thermal bridging effects and/or moisture condensation problems. This paper provides a detailed analysis of the thermal performance of wall/floor intersection. In particular, two-dimensional steady-state and transient solutions of the heat conduction within the wall/floor joint are presented. Various insulation configurations are considered to determine the magnitude of heat transfer increase due to wall/floor joint construction.

Mechanical Properties of Intermetallic/Metal Laminated Composite by SHS Reaction (자전고온반응에 의한 금속간화합물/금속 적층복합재료의 기계적 특성)

  • ;;Manabu Enoki
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.60-63
    • /
    • 2002
  • Metal/intermetallic laminated composites have been manufactured by SHS reactions between Ni and Al elemental metal foils. Microstructure showed that the intermetallic volume fraction was 55%, 45%, 35% in the 1:1, 2:1, 4:1 thickness ratio(Ni:Al) specimen and the main phases of the intermetallic were transformed from $Ni_2Al_3$ to NiAl when the thickness ratio was increased. Tensile strength and elongation were increased when the volume fraction of Ni metallic phase was increased. Under assumptions of isostrain condition, the tensile strength of metal/intermetallic laminated composites didn't obey the ROM due to the thermal residual stress and this was confirmed by X-ray residual stress analysis. Fracture toughness results by the SENB test showed R-curves with upward curvature based on LSB condition. Bridging stress based on LSB condition was determined by the curve fitting analysis, In-situ observed microstructure during fracture test showed that the various bridging mechanism such as crack bridging, crack branching and ductile failure of metallic layer were occurred

  • PDF

Structure and thermal properties of $SnO_2-B_2O_3-P_2O_5$ glasses ($SnO_2-P_2O_5-B_2O_3$ 유리구조 및 열적 특성)

  • An, Yong-Tae;Choi, Byung-Hyun;Ji, Mi-Jung;Ko, Young-Soo;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.91-91
    • /
    • 2008
  • $SnO_2-B_2O_3-P_2O_5$ system were prepared by melt-quenching technique in the compositional series containing 50, 55 aod 60mol.% of $SnO_2$. A large glass-forming region was found at the phosphate side of the ternary system with homogeneous glasses containing up to 5-25mol.% of $B_2O_3$. For these glasses, thermal expansion coeffient($\alpha$), glass transition temperature(Tg), and glass softening temperature(Ts), were determined. The values a decrease with increasing $B_2O_3$ content, while Tg and Ts increased. The reason for the observed changes is local structure of the glasses. Local structure of the glasses was investigated by Raman and FT-IR measurements, suggesting that the number of bridging oxygens decreased whereas the non-bridging oxygen concentration increased with increasing $SnO_2$ content in the glasses.

  • PDF

Structural Modification of Alkali Tellurite Binary Glass System and Its Characterization

  • Lee, Kyu-Ho;Kim, Tae-Ho;Kim, Young-Seok;Jung, Young-Joon;Na, Young-Hoon;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.235-240
    • /
    • 2008
  • This paper presents results and observations obtained from a study of the optical and thermal properties of alkali tellurite depending on the composition. Fourier transform infrared (FT-IR) spectra showed evidence of chemical modification from $TeO_4$ trigonal bipyramids (tbp) to $TeO_3$ trigonal pyramids (tp) in tellurite glasses. The optical band gaps of the different glass samples calculated using Tauc's method were found to range from 3.5-3.8 eV. The glass transition temperature (Tg) and glass stability (${\Delta}T$) of alkali tellurite glasses were investigated, as $M_2O$ [M: Li, Na, K] amounted to 25 mol%, through the use of differential thermal analysis (DTA). The coefficient of thermal expansion (CTE) was measured in a thermo mechanical analysis (TMA) with a slow heating rate after the glass samples were annealed. The results confirm that the optical band gap of alkali tellurite glasses depends on the Te-O-Te structural relaxation related to the ratio of bridging/non bridging oxygen (BO/NBO). In contrast, the thermal properties are related to the ionic field strength of the Te-O-M and M-O-M bonds, and the Te-O-Te breakage depends on the ratio of BO/NBO.

Study of Thermal Bridge Breaker to Prevent the Thermal Bridge Effect on Metal Panel Roofs (금속패널지붕의 열교 방지를 위한 열교차단장치 개발 및 적용효과 분석)

  • Kim, Sun Ho;Jung, Chae Bong;Lee, Chung Shik;Kim, Jong Min;Kim, Byung Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.32-37
    • /
    • 2021
  • To realize a zero-energy building, a technology that minimizes the energy loss due to thermal bridges by preventing their formation is emerging as an important design factor. In this study, we develop a thermal bridge breaker to prevent thermal bridging in a metal panel roof and attempt to analyze the effects of its application. To this end, we fabricated a thermal bridge breaker and analyzed it in terms of its strength and heat-transfer characteristics, in addition to conducting a load simulation. The thermal bridge prevention effect of the developed thermal bridge breaker improved the insulation performance of the metal panel roof, and the results of a cooling/heating peak load simulation performed by applying the heat transmission resistance test results to a building proved the existence of this effect.

Preparation of Spherical Energetic Composites by Crystallization/Agglomeration and their Thermal Decomposition Characteristics (결정화/응집 기법에 의한 구형 에너지 복합체 제조 및 그 열분해 특성)

  • Lee, Eun-Ae;Shim, Hong-Min;Kim, Jae-Kyeong;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.158-164
    • /
    • 2016
  • Spherical DADNE/AP (1,1-diamino-2,2-dinitroethylen/ammonium perchlorate) energetic composites were produced by drowning-out/agglomeration (D/A). The agglomeration of DADNE with AP particles was found to be affected by the amount of the bridging liquid, stirring velocity and residence time. The composites appeared to grow dramatically with the amount of bridging liquid which triggers agglomeration. As the stirring velocity and the residence time increased, the size of composites increased and then tended to decrease. Thermal gravimetric analysis showed that the addition of DADNE activates the low temperature decomposition (LTD) of AP. For the neat AP, the only about 30 wt% of AP was found to decompose at the LTD. On the other hand, it was found that 70 wt% of AP decomposed when DADNE was added by physical mixing and 90 wt% of AP decomposed when the DADNE/AP composites were prepared by the D/A method.

1-Dimensional Zinc Polymer Containing the Quadruply Bridging Oxygen Ligand : $[Zn_4(1,3- BDC)_3({\mu}_4-O)\;(pyridine)_2]$ (4중 가교 산소 리간드를 함유한 1차원 아연 배위 고분자:$[Zn_4(1,3- BDC)_3({\mu}_4-O)\; (pyridine)_2]$ (1,3-BDC : 1, 3-benzenedicarboxylate))

  • Min Dongwon;Lee Soon W.
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.69-73
    • /
    • 2004
  • The hydro(solve)thermal reaction of zinc(II) nitrate $(Zn(NO_3)_2{\cdot}6H_2O)$ with $1,3-BDCH_2\;(1,3-BDC= 1,3-benzenedicarboxylate)$ in the presence of pyridine a gave 1-dimensional zinc polymer $[Zn(1,3- BDC)({\mu}_4-O)\;(pyridine)_2]$ (1). X-ray structure determination revealed that polymer 1 has a quadruply bridging oxygen $({\mu}_4-O)$ ligand. This polymer consists of two strands linked by 1,3-BDC ligands, and each strand is formed by connecting the monomer units by 1,3-DBC ligands.

Effect of Al2O3 on the Structure and Properties of Bioglass (생체 유리의 구조 및 물성에 미치는 Al2O3의 영향)

  • 노종남;황진명;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.811-819
    • /
    • 1989
  • There have been many studies on the biological phenomena of Bioglasses, which nay be used as implant materials in human body. However, not many works on the Bioglass compositions have been reported. In the present study, the effect of Al2O3 substitution for SiO2 in Bioglass of Na2O-CaO-P2O5-SiO2 system on its structure and properties was examined. Infrared and Raman spectroscopic studies for the glass structural analysis, differential thermal analysis and X-ray diffraction analysis for crystallization of the glass were perfomed. Several physical properties, such as thermal expansion coefficient, softening point, microhardness and reaction phenomena, were also measured. The major crystalline phase, after heat treatment of the glasses, was Na2Ca2(SiO2)3 and the crystal was transformed into other phase with increased substitution of Al2O3. The added Al2O3 reduced non-bridging oxygen in glass structure and thermal expansion coefficient, but increased glass density, sofening point and microhardness. When the glasses are reacted in Tris-buffer solution, the substituted Al2O3 inhibited the formation of hydroxyapatite on the Bioglas surface, and no hydroxyapatite was formed for the sample which contained more than 6wt.% of Al2O3 even if they were reacted for 600 hours.

  • PDF