• Title/Summary/Keyword: Thermal applications

Search Result 1,616, Processing Time 0.032 seconds

Recent Developments Involving the Application of Infrared Thermal Imaging in Agriculture

  • Lee, Jun-Soo;Hong, Gwang-Wook;Shin, Kyeongho;Jung, Dongsoo;Kim, Joo-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.280-293
    • /
    • 2018
  • The conversion of an invisible thermal radiation pattern of an object into a visible image using infrared (IR) thermal technology is very useful to understand phenomena what we are interested in. Although IR thermal images were originally developed for military and space applications, they are currently employed to determine thermal properties and heat features in various applications, such as the non-destructive evaluation of industrial equipment, power plants, electricity, military or drive-assisted night vision, and medical applications to monitor heat generation or loss. Recently, IR imaging-based monitoring systems have been considered for application in agricultural, including crop care, plant-disease detection, bruise detection of fruits, and the evaluation of fruit maturity. This paper reviews recent progress in the development of IR thermal imaging techniques and suggests possible applications of thermal imaging techniques in agriculture.

Considerations on the Long-term Reliability of On-line Partial Discharge Ceramic Sensor for Thermal Power Generators and its Demonstration in the Field

  • Sun, Jong-Ho;Youn, Young-Woo;Hwang, Don-Ha;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.103-108
    • /
    • 2012
  • The present study describes the considerations on the long-term reliability of the on-line partial discharge (PD) ceramic sensor for thermal power generators. Voltage acceleration aging tests were carried out under continuous and impulsive thermal aging at more than $100^{\circ}C$, considering the practical service environment. Experimental results show that the sensors have a life that could last for more than 100 years, excellent dielectric characteristics, and insulation strength. In addition, the ceramic on-line PD sensors were installed in a thermal power generator in Korea for demonstration. The results of the PD calibration and test voltage application prove that the on-line ceramic sensors have satisfactory performances for on-line PD measurement.

Effect of Thermal Treatment on the Performance and Nanostructures in Polymer Solar Cells with PTB7-Th:PC71BM Bulk Heterojunction Layers

  • Lee, Sooyong;Seo, Jooyeok;Jeong, Jaehoon;Lee, Chulyeon;Song, Myeonghun;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.69-74
    • /
    • 2017
  • Here we report the influence of thermal treatment on the performance of high efficiency polymer solar cells with the bulk heterojunction films of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b'] dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl $C_{71}$ butyric acid methyl ester ($PC_{71}BM$). The crystalline nanostructure of PTB7-Th:$PC_{71}BM$ layers, which were annealed at three different temperatures, was investigated by employing synchrotron radiation grazing incidence X-ray diffraction (GIXD) technique. Results showed that the device performance was slightly reduced by thermal annealing at $50^{\circ}C$ but became significantly poor by thermal annealing at $100^{\circ}C$. The poor device performance by thermal annealing was attributed to the collapse in the crystalline nanostructure of PTB7-Th in the PTB7-Th:$PC_{71}BM$ layers as evidenced by the GIXD measurements that exhibited huge reduction in the intensity of PTB7-Th (100) peak even at $50^{\circ}C$.

Thermal Characteristics of Epoxy-Nanocomposites filled Several Types Nano Layered Silicate Particles (나노층상실리케이트가 충진된 에폭시-나노콤포지트의 열적특성 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.749-754
    • /
    • 2008
  • A large number of studies on the various characteristics of epoxy-layered silicate nanocomposites, such as electric and mechanical, morphology have been conducted and contributed to improve their characteristics. However, studies on the effects of its thermal conductivities in the thermal properties are not enough, even though there are some excellent evaluations for its insulation performances. Thermal properties will cause thermal degradation and significantly affect the reliability of these epoxy-layered silicate nanocomposites. In the results of the analysis of epoxy-layered silicate nanocomposites $T_g$ for various types of organoclays (10A, 15A, 20A, 30B, and 93A), it showed an excellent thermal property of 10A. Also, it represented low values in storage modulus and mechanical Tan (Delta) at a high temperature section 140$^{\circ}C$ and excellent thermal properties due to its movement to the high temperature section in the case of the property of 10A in the measurement of DMA elastics and mechanical losses. In the results of the measurement of thermal conductivities, power ultrasonic applications represented a significant increase in thermal conductivities in the case of the applications of power ultrasonic and planetary centrifugal mixers. Based on these results, it is necessary to perform related studies because it can be applied as useful materials for future power facilities applications in mold and impregnate insulation.

Numerical analysis of plasma-sprayed ceramic coatings for high-temperature applications

  • St. Doltsinis, Ioannis;Haller, Kai-Uwe;Handel, Rainer
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.679-702
    • /
    • 1996
  • The finite element method is employed in conjunction with micromechanical modelling in order to assess the performance of ceramic thermal barrier coatings applied to structural components. The study comprises the conditions of the deposition of the coating by plasma spraying as well as the thermal cycling of the coated component, and it addresses particularly turbine blades. They are exposed to high temperature changes strongly influencing the behaviour of the core material and inducing damage in the ceramic material by intense straining. A concept of failure analysis is discussed starting from distributed microcracking in the ceramic material, progressing to the formation of macroscopic crack patterns and examining their potential for propagation across the coating. The theory is in good agreement with experimental observations, and may therefore be utilized in proposing improvements for a delayed initiation of failure, thus increasing the lifetime of components with ceramic thermal barrier coatings.

A review on thermomechanical properties of polymers and fibers reinforced polymer composites

  • Saba, N.;Jawaid, M.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.1-11
    • /
    • 2018
  • Polymer composites offered broad engineered applications, however their diversity get restricted owing to fluctuations in thermomechanical properties during heating or cooling hence great concern required prior their applications through thermomechanical analysis (TMA). Traditionally, TMA or dilatometry found to be simple, ideal, reliable, sensitive, excellent and basic thermal analytical technique. TMA provides valuable information on thermal expansion, glass transitions temperature (Tg), softening points, composition and phase changes on material of having different geometries simply by applying a constant force as a function of temperature. This compilation highlights the basics and experimental of TMA for both research and technical applications and also provide literature on TMA of polymers, hybrid composites, nanocomposites and their diverse applications.

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

NEW FRONTIERS IN THERMAL PLASMAS FROM SPACE TO NANOMATERIALS

  • Boulos, Maher I.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Thermal plasma technology has been at the center of major developments over the past century. It has found numerous applications ranging from aerospace materials testing to nanopowder synthesis and processing. In the present review highlights of principal breakthroughs in this field are presented with emphasis on an analysis of the basic phenomena involved, and the potential of the technology for industrial scale applications.

Thermal Characteristics of Domestic Solar Collector for Low-Temperature Applications (국내 저온용 집열기의 열성능 특성)

  • Kim, Jeong-Bae;Rhie, Soon-Myeong;Yoon, Eung-Sang;Lee, Jin-Kook;Joo, Moon-Chang;Baek, Nam-Choon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.215-220
    • /
    • 2008
  • This study shows the results on thermal performance test with domestic solar collector for low-temperature applications using KS, then reveals the efficiency difference between KS and EN standard. Using the test results, this study presents the status of thermal performance with domestic solar collector including flat-plate, single evacuated, and double evacuated (with mirror or U-tube) solar collector.

  • PDF