• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.046 seconds

Variation of Human Thermal Radiation Characteristics Applying Different Clothing Materials (의복 소재 변경에 따른 인체 열상신호 변화 특성)

  • Chang, Injoong;Bae, Ji-Yeul;Lee, Namkyu;Kwak, Hwykuen;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.644-653
    • /
    • 2019
  • With the development of themal observatory device(TOD), thermal camouflage system has been applied not only to the weapon system but also to the combat suit for soldiers. In this paper, the characteristic of thermal radiation of human body depending on the clothing material properties was analyzed through numerical simulations. The bioheat equation with thermoregulatory model was solved to obtain the realistic surface temperature of human body and these results are combined with the emissivity of human skin and clothing in order to calculate the thermal signature from the human body. According to each thermal resistance of clothing, the optimal background radiance which makes contrast radiance intensity(CRI) be lowest is different. Also, the average CRI variation per thermal resistance change is about twice as much as the case of evaporative resistance change.

A Study on Thermal Load Management in a Deep Geological Repository for Efficient Disposal of High Level Radioactive Waste

  • Jongyoul Lee;Heuijoo Choi;Dongkeun Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.469-488
    • /
    • 2022
  • Technology for high-level-waste disposal employing a multibarrier concept using engineered and natural barrier in stable bedrock at 300-1,000 m depth is being commercialized as a safe, long-term isolation method for high-level waste, including spent nuclear fuel. Managing heat generated from waste is important for improving disposal efficiency; thus, research on efficient heat management is required. In this study, thermal management methods to maximize disposal efficiency in terms of the disposal area required were developed. They efficiently use the land in an environment, such as Korea, where the land area is small and the amount of waste is large. The thermal effects of engineered barriers and natural barriers in a high-level waste disposal repository were analyzed. The research status of thermal management for the main bedrocks of the repository, such as crystalline, clay, salt, and other rocks, were reviewed. Based on a characteristics analysis of various heat management approaches, the spent nuclear fuel cooling time, buffer bentonite thermal conductivity, and disposal container size were chosen as efficient heat management methods applicable in Korea. For each method, thermal analyses of the disposal repository were performed. Based on the results, the disposal efficiency was evaluated preliminarily. Necessary future research is suggested.

Study on the equivalent test equipment for AC Motor (전력회생형 부하시험장치에 관한 연구)

  • 김현수;김한종;허재영;최창식;이제필;장철호;정종태
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.295-298
    • /
    • 1997
  • In large system, design margin makes relatively price higher. So, optimal design through exact analysis of thermal behavior is needed. In this paper, we propose the equivalent load test facility using two inverter & converter system and inductors. Applying actual electrical profiles for motor drive, thermal characteristics of power converter fed AC motor drive are obtained, and the results are compared with simulation results.

  • PDF

An experimental study on the heat transfer characteristics of a Ondol-heated space by varying pipe embedding depths and hot water supply conditions (보일러 운전조건 및 마감층 두께 변화에 따른 온돌난방공간의 열특성에 관한 실험연구)

  • 박병윤
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 1991.09a
    • /
    • pp.41-47
    • /
    • 1991
  • This study reports the results of the transient temperature response of a floor heating panel according to variation of the hot water supply temperature and the pipe embedding depth. Also, this experiment compares the temperature responses of floor heating panels under the continuous and intermittent heating system. Furtthermore, this study presents some details of the thermal response of Ondol-heated buildings to varying loads and patterns of heat input. The analysis of the thermal performance fo Ondol heating system have been presented.

  • PDF

NOx Formation Characteristics in Diffusion, Partial Premixed and Premixed Jet flame (가스 연료의 연소 방식에 따른 NOx 생성 특성)

  • Choi, Young-Ho;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.155-164
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymetric 2-D CH4 jet diffusion, partial premixed, premixed flame. Calculations were carried out twice with C2-Full Mechanism including prompt NO reaction in addition to the above C2-Thermal NO Mechanism. The role of thermal NO mechanism and prompt NO mechanism on each flame's NO production is investigated by using the numerical result. The NOx production of each flame were evaluated Quantitatively in terms of the NOx emission index

  • PDF

Analysis of Thermal Characteristics for Components of Electrical Door System in Electric Multiple Unit (전동차 전기식 도어시스템의 구성부품에 대한 발열 특성분석)

  • Lee, Bon Hyung;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • This research conducted an the failure analysis was performed based on the failure and operation data for Seven years using the Reliability, Availability, Maintainability, and Safety(RAMS) constructed at the operation stage after the opening of the D urban railway. therefore, the risk priority was selected for failure frequency component within the door system that showed high failure. Finally, the goal was to suggest ways to improve the door system. For this purpose, the analysis of thermal characteristics of failed components such as Door Control Unit(DCU) in the door system based on the Seven-year failure analysis data of RAMS was performed. These results were applied to the main component exchange cycle of the door unit, the mean time between failure(MTBF) and mean kilometer between failure(MKBF) values of RAMS increased by 26% in 2017-2018 when the improvement measures were taken, and the MTBF value of DCU was 300,000 hours, which was a 57% improvement in reliability. The results of this thesis identify potential enhancements in reliability and improvements in maintenance of the door system that, if implemented, would contribute to train safety and reduce instances of failure in the future.

A Study on Cooling Performance of In-wheel Motor for Green Car (그린카용 인휠 모터의 냉각 성능에 관한 연구)

  • Jung, Jung-Hun;Kim, Sung-Chul;Hong, Jung-Pyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The in-wheel motor used in green car was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, a outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor under the effects of motor speed and heat generation. In order to check the problem of heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). Also, the thermo-flow characteristics analysis of in-wheel motor for vehicles was performed in consideration of ram air effect. Therefore, we checked the feasibility of the air cooling for the housing geometry having cooling grooves and investigated the cooling performance enhancement.

A Study on the Electrical-Fire Analysis and Firing Characteristics of Power Cord by Thermal Stress (열적 피로에 의한 전원코드의 발화 특성과 전기화재 분석에 관한 연구)

  • 최충석;송길목;김향곤;김동욱;김동우
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2003.04a
    • /
    • pp.164-170
    • /
    • 2003
  • In this paper, we studied on the firing characteristics and electrical fire analysis of power cord deteriorated by thermal stress. The cross section of PVC insulating cord deteriorated by indirect flame decreased through heat convection. PVC insulating cord deteriorated by direct flame was bumpy shape. The exothermic peak of normal cord was shown at ($526.7^{\circ}C$), but the peaks or on(heat treatment temperature) ($150^{\circ}C$) cord was shown at ($299.6^{\circ}C$) and [$502.2^{\circ}C$]. The exothermic peaks according to high temperature were similar to those of amorphous carbon. In the FT-IR analysis, the absorption peak of normal cord indicated double bond of oxygen and carbon in benzene ring at 1720.0$cm^{1}$. As the HTT was high, the height of characteristic peak decreased and the peak of carbonyl group was shown at about 1625.7$cm^{-1}$. The characteristic peak of single bond(O-H) was shown at about 3479.2$cm^{-1}$. In case of the internal part of wire covering deteriorated by over current, the characteristic peak were shown at about 3417.3$cm^{-1}$ and 1600.2$cm^{-1}$. The above results show that we can distinguish the differences according to the fire pattern through the internalㆍexternal analysis of wire covering deteriorated by heat.

  • PDF

Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit (전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석)

  • Suh, Il Woong;Lee, Young-ho;Kim, Young-hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1011-1019
    • /
    • 2015
  • Insulated-gate bipolar transistors (IGBTs) are the predominantly used power semiconductors for high-current applications, and are used in trains, airplanes, electrical, and hybrid vehicles. IGBT power modules generate a considerable amount of heat from the dissipation of electric power. This heat generation causes several reliability problems and deteriorates the performances of the IGBT devices. Therefore, thermal management is critical for IGBT modules. In particular, realizing a proper thermal design for which the device temperature does not exceed a specified limit has been a key factor in developing IGBT modules. In this study, we investigate the thermal behavior of the 1200 A, 3.3 kV IGBT module package using finite-element numerical simulation. In order to minimize the temperature of IGBT devices, we analyze the effects of various packaging materials and different thickness values on the thermal characteristics of IGBT modules, and we also perform a design-of-experiment (DOE) optimization