• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.034 seconds

Performance Analysis of a Gas Turbine for Power Generation Using Syngas as a Fuel (Syngas를 연료로 사용하는 발전용 가스터빈의 성능해석)

  • Lee, Jong-Jun;Cha, Kyu-Sang;Sohn, Jeong-Lak;Joo, Yong-Jin;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increases the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition.

Analysis of Output Voltage Properties of Non-dispersive Infrared Gas Sensors According to Ambient Temperatures (주변 온도 영향에 따른 비분산 적외선 가스센서의 출력 특성 해석)

  • Park, Han-Gil;Yi, Seung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.294-299
    • /
    • 2018
  • This article describes the output properties of non-dispersive infrared carbon dioxide($CO_2$) sensors resulting from the changes in ambient temperatures. After the developed sensor module was installed inside the gas chamber, the temperature was set to 267 K, 277 K, 300 K, and 314 K, and the concentrations of $CO_2$ gas were increased from 0 to 5,000 ppm. Then, the output voltage at each concentration was obtained. Through these experimental results, two observations were made. First, both the $CO_2$ sensor and the reference sensor showed an increase in the output voltages as the temperature rose from 0 ppm, Second, the full scale outputs of the $CO_2$ sensor grew as the temperature increased. The output characteristics were analyzed based on two factors: change in the radiant energy of the infrared light source and change in the absorptivity of $CO_2$ gas according to the ambient temperature. Additionally, temperature compensation methods were discussed.

CHARACTERISTICS AND STRENGTH EVALUATION OF THE MIXED MATERIAL OF FLY ASH FROM MUNICIPAL SOLID WASTE INCINERATOR AND THE RECYCLED POLYPROPYLENE

  • Park, Sang-Min;Kim, Hwan-Gi
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.257-265
    • /
    • 2006
  • The purpose of research is to mix the fly ash from municipal solid waste incinerator in the recycled Polypropylene and to recycle. The specimen was produced by mixing 20 wt.% of MSWI fly ash at maximum in the recycled Polypropylene and the particle size analyzer, DSC, TGA, SEM and UTM instruments were used to analyze the physical chemical properties of the specimen. As a result of measurement, the average particle size of MSWI fly ash was $18.08\;{\mu}m$. In TGA analysis, the temperature of specimen S-5 at 50% of weight decrease was risen by $7^{\circ}C$ higher than specimen S-1. In UTM measurement, specimen S-2 showed the maximum strength for tensile strength and specimen S-3 showed the maximum strength for flexural strength. But, impact strength was decreased according to the increasing proportion of MSWI fly ash. In conclusion, when the proper amount of MSWI fly ash was added to the recycled Polypropylene, thermal endurance, tensile strength and flexural strength could be increased, but impact strength was decreased.

A study on abrasive wear characteristics of side plate of FRP ship (온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.

Analysis on the Chemical and Electrical Characteristic of Vegetable oil by Accelerated Aging (가속열화에 따른 식물성절연유의 화학적.전기적 특성 분석)

  • Choi, Sun-Ho;Jeong, Jung-Il;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.984-989
    • /
    • 2011
  • Electrical insulation is one of the most important part in a high voltage apparatus. Recently, researchers are interested in the environmental friendly vegetable oil from environmental viewpoint. Accelerated aging transformer insulating material in vegetable oil was compared to that of mineral oil. Accelerated aging oil samples produced in the oven at $140^{\circ}C$ for 500, 1000, 1500, 2000hours. And Real transformer insulation oils samples of vegetable oil and mineral oil were aged by thermal cycles repeating from $30^{\circ}C$ to $120^{\circ}C$. Samples were analyzed at 42, 63, 93, 143, 190, 240, 300 cycles. The mineral and vegetable insulating oils were investigated for breakdown voltage, water content, total acid number, viscosity, volume resistivity, insulating paper and oil permittivity, and dissolved gas analyses. The breakdown voltage of the vegetable insulating oil is higher than that found for the mineral oil; the accelerated aging progress decreased the breakdown voltage. The vegetable oil had a higher water saturation than the mineral oil; the vegetable oil has the superior water characteristics and breakdown voltage. And high viscosity of vegetable oil, care has to be taken, especially when designing the cooling system for a large transformer.

Fire Sensing Characteristics and Natural Convection in the Enclosure Partly Heated from Below (밑면이 부분 가열체를 갖는 정사각 밀폐공간내의 자연대류와 화재감지에 관한 연구)

  • 추병길
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.6-16
    • /
    • 1990
  • In this paper, the natural convection in a square enclosure, partly heated from below, with two adiabatic vertical wall and one upper horigental wall is studied nomerically. In numerical study, SIMPLE(Semi-Implicit for Pressure Linked Equation) algorithems are applied for the integration of momentum and energy equation. The grid size used in this study is the coordinates of size (22$\times$22). As a result of numerical analysis, the initial fluid flow depends on the thermal diffusion, but, as time passes, the fluid flow depends on convection and buoyancy of the enclosure. In Case 1, the heating region was been in the central position of the bottom wall. In case 2, the heating region was in the left position of the bottom. In case of Case 1, the lapse time of sensing the temperature of 72$^{\circ}C$ is approximately 15 sec almost at the same time in the coordinates (6, 22), (11, 22). In case of Case 2, the lapse time in the coordinates (6, 22), (11, 22) was 27 sec, 25 sec repectively. Also in case of Case 1 or Case 2, the gradients of y-position of the two sensors are transposed each other.

  • PDF

Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid (유체 내 전기선폭발법에 의한 은 나노입자 유체의 제조 및 특성)

  • Park, E.J.;Bac, L.H.;Kim, J.S.;Kwon, Y.S.;Kim, J.C.;Choi, H.S.;Chung, Y.H.
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.217-222
    • /
    • 2009
  • This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.

An Analysis on 3-Dimensional Temperature Distribution of Jet Vanes for a Thrust Vector Control (추력방향조종용 제트베인의 3차원 온도분포 해석)

  • Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.283-291
    • /
    • 2011
  • A computational investigation has been carried out to study the heat transfer characteristics of jet vane assembly used for the thrust vector control(TVC) of a vertical launch motor. In this study, the coefficients of convective heat transfer on the jet vane are calculated using the solutions of thermal boundary-layer equation and several semi-empirical equations. The calculation of 3-dimensional temperature distribution for the jet vane assembly was performed using the softwares called PATRAN and ABAQUS. The accuracy of the present numerical method is verified by comparing with the measured and calculated temperatures within jet vane shaft. The temporal variation of jet vane temperatures for three deflection angles(0o, 12.5o, 25o) was discussed.

  • PDF

Effects of glass powder on the characteristics of concrete subjected to high temperatures

  • Belouadah, Messaouda;Rahmouni, Zine El Abidine;Tebbal, Nadia
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.311-322
    • /
    • 2018
  • This paper presents an experimental investigation on the performance of concrete with and without glass powder (GP) subjected to elevated temperatures. Mechanical and physicochemical properties of concretes were studied at both ambient and high temperatures. One of the major environmental concerns is disposal or recycling of the waste materials. However, a high volume of the industrial production has generated a considerable amount of waste materials which have a number of adverse impacts on the environment. Further, use of glass or by-products in concrete production has advantages for improving some or all of the concrete properties. The economic incentives and environmental benefits in terms of reduced carbon footprint are also the reason for using wastes in concrete. The occurrence of spalling, compressive strength, mass loss, chemical composition, crystalline phase, and thermal analysis of CPG before and after exposure to various temperatures (20, 200, 400, and $600^{\circ}C$) were comprehensively investigated. The results indicated that, the critical temperature range of CPG was between $400^{\circ}C$ and $600^{\circ}C$.

Computer Simulation of an Absorption Heat Pump for Recovering Low Grade Waste Heat (저온 폐열 회수를 위한 제1종 흡수식 열펌프의 컴퓨터 시뮬레이션)

  • Karng, S.W.;Kang, B.H.;Jeong, S.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-197
    • /
    • 1996
  • A computer program for thermal design analysis has been developed to predict the operating characteristics and performance of an absorption heat pump to recover $30{\sim}40^{\circ}C$ of waste hot water. The effects of heat transfer area of the system components, temperature and mass flow rate of heat transfer medium, and solution circulation rate on the system performance are investigated in detail. The results obtained indicate that the COP is increased with a decrease in the temperature of driving steam and with an increase in the temperature of waste hot water while the COP is little affected by the variation of a hot water temperature. It is also found that the heating output is increased with an increase in the temperature of waste hot water and driving steam as well as with a decrease in the temperature of hot water. The simulation results are also compared with the experimental results for a periodic operation of the system and obtained a satisfactory agreement.

  • PDF