• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.027 seconds

Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks (LNG 저장탱크의 종합 열유동 해석프로그램 개발)

  • Kim Hoyeon;Choi Sunghee;Bak Young;Lee Junghwan;Yoon Ikkeun;Kim Donghyuk;Ha Jongmann;Joo Sangwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.52-61
    • /
    • 2001
  • Cryogenic LNG(Liquefied Natural Gas) which is stored in the cylindrical storage tanks of $100,000m^3$ has very complex flow phenomena and the changes of thermal properties with exterior conditions and operation modes. These complex thermofluid behaviors are affected by the storage, exterior conditions of LNG, design specifications and heat transfer characteristics of tanks. Also, those have influence on the stable storage and supply of LNG in the storage tanks. Thus this study peformed the analysis on the 2-D heat transfer of the tank with exterior conditions, on the Cool Down Process in order to cool down the LNG Storage Tank at the initial normal state, and on the Filling Process considered for incoming and rising of LNG. The analysis on the Mixing LNG Storage was studied too. At last, the visualized program on the complex thermofluidodynamic analysis was developed on the basis of the above analyses. The development of this program becomes to be used to the basic design of the commercial tanks as well as to assure technical skill of the analysis on the thermal stability of the stored LNG in the LNG Storage Tank.

  • PDF

Analysis of Areas Vulnerable to Urban Heat Island Using Hotspot Analysis - A Case Study in Jeonju City, Jeollabuk-do - (핫스팟 분석을 이용한 도시열섬 취약지 특성 분석 - 전주시를 대상으로 -)

  • Ko, Young-Joo;Cho, Ki-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.67-79
    • /
    • 2020
  • Plans to mitigate overheating in urban areas requires the identification of the characteristics of the thermal environment of the city. The key information is the distribution of higher and lower temperatures (referred to as "hotspot" or "coldspot", respectively) in the city. This study aims to identify the areas within Jeonju City that are suffering from increasing land surface temperatures (LST) and the factors linked to such this phenomenon. To identify the hot and cold spots, Local Moran's I and Getis-Ord Gi* were calculated for the LST based on 2017 images taken using the thermal band of the Landsat 8 satellite. Hotspot analysis revealed that hotspot regions, (the areas with a high concentration of Land Surface Temperature) are located in the old town area and in industrial districts. To figure out the factors linked to the hotspots, a correlation analysis, and a regression analysis taking into account environmental covariates including Normalized Difference Vegetation Index (NDVI) and land cover. The values of NDVI showed that it had the strongest effect on the lowering LSTs. The results of this study are expected to provide directions for urban thermal environment designing and policy development to mitigate the urban heat island effect in the future.

Analysis of Heating Characteristics of Multi-Layered Insulation Curtain with Silica Aerogel in Greenhouses (실리카 에어로겔을 이용한 다겹보온커튼의 온실 난방 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.320-325
    • /
    • 2020
  • This study aimed to analyze thermo-keeping and economic feasibility by utilizing silica aerogel, which has been attracting attention as a new material, complementing the disadvantages of the conventional multi-layered thermal screen, and producing and installing multi-layered thermal screen. The multi-layered thermal screen used in the experiment was produced in two combinations using a non-woven fabric containing silica aerogel and measured and compared the temperature and fuel consumption changes due to differences in practice with the multi-layered thermal screen being sold and used on the market. Experimental results show that the temperature and relative humidity changes due to the differences of the multi-layered thermal screens in the single-span greenhouse and the multi-span greenhouse were small but remained almost the same temperature and relative humidity. It is judged that this shows that the multi-layered thermal screen using silica aerogel is not inferior to the conventional multi-layered thermal screen. As a result of a comparative analysis of heating energy, the aerogel-based multi-layered thermal screen reduced fuel consumption by about 15% in the single-span greenhouse and about 20% in the multi-span greenhouse compared to the conventional multi-layered thermal screen. It is clear that heating energy is saved as a greenhouse size and duration increase. It was found that the silica aerogel-based multi-layered screen was more breathable and warmer than the conventional multi-layered thermal screen, but It was found that the multi-layered screen used in the multi-span greenhouse was heavier and stiff compared with the conventional multi-layered thermal screen, indicating less workability and operability. Therefore, improvements were applied to the multi-layered screens used in the single-span greenhouses. It was confirmed that the replacement of internal insulation materials reduced thickness and improved stiffness so that there could be sufficient possibility for farmers to use.

Damage Analysis of Turbopump Turbine considering Creep-Fatigue effects (크리프-피로 영향을 고려한 터보펌프 터빈의 손상해석)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Kim, Jin-Han;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Structures under high temperature may have creep behavior and fatigue behavior. Durability study of the structures need the damage analysis with the creep-fatigue effects. In this paper, the damage analysis is studied for a turbine blade in the turbopump for a liquid rocket engine which is operated under high temperature condition. First of all, the load cycle is required for defining the operational characteristics of turbopump. The thermal stress analysis is done for a turbine blade of the turbopump. The stress analysis results are used to judge damage due to the creep and the fatigue. The strain-life method with miner rule is used for fatigue damage analysis. The Larson-Miller parameter master curve and robinson rule are used for the creep damage analysis. The linear damage summation method is used to consider creep-fatigue effects of turbopump turbine. Finally, the analysis results for fatigue and the influence are compared to figure out the damage phenomenon of the turbopump turbine.

Characteristic Analysis of Hot Spot Temperature according to Cooling Performance Variation of Natural Ester Transformer (식물성 절연유 변압기의 냉각특성 변화에 따른 최고점온도 특성 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.236-240
    • /
    • 2015
  • Natural ester has a higher biodegradability, flash and fire points, and a greater permittivity compared to conventional mineral oils. However, natural ester also has a higher pour point, viscosity, and water content. These characteristics hamper circulation and the electrical properties of oil-filled transformer. Thus, this paper applied electromagnetic-thermal-flow coupled analysis method to predict temperature distribution inside 154kV single phase power transformer using natural ester. It modeled in the actual appearance for the tank and winding of the power transformer to improve the accuracy of analysis and applied heat flow analysis that considered hydromechanics and heat transfer at the same time. It calculated the power loss, the main cause of temperature rise, from winding and core with electromagnetic analysis then used for the heat source for the heat flow analysis. It then compared the reasonability of result of measurement analysis based on the result acquired from temperature rise test using FBG sensor on the power transformer.

In-depth investigation of natural convection thermal characteristics of BALI experiment through Eulerian computational fluid dynamics code and comparison with Lagrangian code

  • Hyeongi Moon;Sohyun Park;Eungsoo Kim;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • In-vessel retention through external reactor vessel cooling (IVR-ERVC) is a severe accident management (SAM) strategy that has been adopted and used in many nuclear reactors such as AP1000, APR1400, and light water reactor etc. Some reactor accidents have raised concerns about nuclear reactors among residents, leading to a decrease in residents' acceptability and many studies on SAM are being conducted. Experiments on IVR-ERVC are almost impossible due to its specificity, so fluid characteristics are analyzed through BALI experiments with similar condition. In this study, computational fluid dynamics (CFD) via Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) for BALI experiments were performed. Steady-state CFD analysis was performed on three turbulence models, and SST k-ω model was in good agreement with the experimental measurement temperature within the maximum error range of 1.9%. LES CFD analysis was performed based on the RANS analysis results and it was confirmed that the temperature and wall heat flux for depth was consistent within an error range of 1.0% with BALI experiment. The LES CFD analysis results were compared with those of the Lagrangian-based solver. LES matched the temperature distribution better than SOPHIA, but SOPHIA calculated the position of boundary between stratified layer and convective layer more accurately. On the other hand, Lagrangian-based solver predicted several small eddy behaviors of the convective layer and LES predicted large vortex behavior. The vibration characteristics near the cooling part of the BALI experimental device were confirmed through Fast Fourier Transform (FFT) investigation. It was found that the power spectral density for pressure at least 10 times higher near the side cooling than near the top cooling.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

A Study on Optimization Approach for the Quantification Analysis Problem Using Neural Networks (신경회로망을 이용한 수량화 문제의 최적화 응용기법 연구)

  • Lee, Dong-Myung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.206-211
    • /
    • 2006
  • The quantification analysis problem is that how the m entities that have n characteristics can be linked to p-dimension space to reflect the similarity of each entity In this paper, the optimization approach for the quantification analysis problem using neural networks is suggested, and the performance is analyzed The computation of average variation volume by mean field theory that is analytical approximated mobility of a molecule system and the annealed mean field neural network approach are applied in this paper for solving the quantification analysis problem. As a result, the suggested approach by a mean field annealing neural network can obtain more optimal solution than the eigen value analysis approach in processing costs.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

A Study on Contact Characteristics of Mechanical Face Seals for a Hydro-power Turbine Depending on the Rubbing Surface Geometry (소수력 터빈용 기계평면시일의 표면마찰형상에 따른 접촉특성 해석에관한 연구)

  • Kim Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.119-126
    • /
    • 2006
  • In this paper, the contact behavior characteristics of a primary sealing components such as a seal ring and a seal seat has been presented for a small hydro-power turbine. Using the non-linear FEM analysis, the maximum temperature, the axial displacement, radial differences between a seal ring and a seal seat, and maximum contact normal stress have been analyzed for three optimized sealing profiles in which are designed based on the FEM analysis and Taguchi's experimental method. The three primary sealing profiles between a seal ring and a seal seat are strongly related to a leakage of a water for a hydro-power turbine and wear of a primary sealing component. The computed results show that the contact rubbing area between a seal ring and a seal seat is very important for reducing a friction heating and wear in a sealing gap, and increasing a contact normal stress in primary sealing components. Based on the FEM computation, models II and III in which have a small rubbing surface of seal rings show low dilatation of primary sealing components, and high normal contact stress between a seal ring and a seal seat. Thus, the FEM computed results recommend a short contacting width of a primary sealing component for reducing a leakage and thermal distortions, and expanding a seal life. This means that a conventional primary sealing component may be switched to a reduced sealing face of seal rings.