• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.03 seconds

Analysis of Thermal Characteristics for the Fire Risk Assessment According to Partial Disconnection on the VCTF and IV Electric Wire (VCTF와 IV전선의 반단선에 의한 화재위험성 평가를 위한 열적특성 해석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Lee, Jong-Ho;Park, Jong-Young;Park, Young-Ho;Lee, Hyung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Many researches on fire risk for normal electric wiring have been pursued in advanced countries such as the USA and Japan, but comparative studies of the partial disconnection and normal state of electric wires have not been conducted. Detection system for the cause of partial disconnection is not developed and prevention countermeasure for electrical fire by the cause is not effective. Therefore, in this paper, partial disconnection characteristics on electric wires were derived and analyzed by experiment and electrical-thermal finite element method(Flux 3D) on the model wires which consist of VCTF(PVC insulated PVC sheathed Cap Tyre Flexible Cord, KS C 3304) and IV(lndoorwire PVC, KS C 3302). VCTF is used in wiring portable electric appliances and the IV is used indoors. Interrelationships between partial disconnection premonitory symptom and current were derived and analyzed by the characteristics based on experiments and thermal analysis for electric wire according to current under normal state and 200% overload state of rated current.

An Analysis on the Thermal Shock Characteristics of Pb-free Solder Joints and UBM in Flip Chip Packages (플립칩 패키지에서 무연 솔더 조인트 및 UBM의 열충격 특성 해석)

  • Shin, Ki-Hoon;Kim, Hyoung-Tae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-139
    • /
    • 2007
  • This paper presents a computer-based analysis on the thermal shock characteristics of Pb-free solder joints and UBM in flip chip assemblies. Among four types of popular UBM systems, TiW/Cu system with 95.5Sn-3.9Ag-0.6Cu solder joints was chosen for simulation. A simple 3D finite element model was first created only including silicon die, mixture between underfill and solder joints, and substrate. The displacements due to CTE mismatch between silicon die and substrate was then obtained through FE analysis. Finally, the obtained displacements were applied as mechanical loads to the whole 2D FE model and the characteristics of flip chip assemblies were analyzed. In addition, based on the hyperbolic sine law, the accumulated creep strain of Pb-free solder joints was calculated to predict the fatigue life of flip chip assemblies under thermal shock environments. The proposed method for fatigue life prediction will be evaluated through the cross check of the test results in the future work.

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (II) - The Effect of the Reynolds Number (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각특성에 관한 연구(II) -레이놀즈 수의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.509-517
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To estimate the thermal performance of the heat-generating components arranged by $5\times11$ in channel flow, three variables are used: the inlet velocity, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. The experimental result is in a good agreement with the numerical analysis. The heat transfer coefficient increases as the Reynolds number increases, while the thermal wake function calculated for each row decreases as the Reynolds number increases. In addition, it is found that Nu-Re correlation equation is Identical to the previous studies, and the empirical correlation equation between the thermal wake function and Re is presented.

Analysis of Dynamic Characteristics of 20 kW Hydrogen Fuel Cell System Based on AMESet (AMESet 기반 20 kW급 수소 연료전지 시스템 동특성 모델 해석)

  • JONGBIN WOO;YOUNGHYEON KIM;SANGSEOK YU
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.465-477
    • /
    • 2023
  • In proton exchange membrane fuel cell (PEMFC), proper thermal management of the stack and moisture generation by electrochemical reactions significantly affect fuel cell performance. In this study, the PEMFC dynamic characteristic model was developed through Simcenter AMESim, a development program. In addition, the developed model aims to understand the thermal resin balance of the stack and performance characteristics for input loads. The developed model applies the thermal management model of the stack and the moisture content and permeability model to simulate voltage loss and stack thermal behavior precisely. This study extended the C based AMESet (adaptive modeling environment submodeling tool) to simulate electrochemical reactions inside the stack. Fuel cell model of AMESet was liberalized with AMESim and then integrated with the balance of plant (BOP) model and analyzed. And It is intended to be used in component design through BOP analysis. The resistance loss of the stack and thermal behavior characteristics were predicted, and the impact of stack performance and efficiency was evaluated.

Analysis of the fluid-solid-thermal coupling of a pressurizer surge line under ocean conditions

  • Yu, Hang;Zhao, Xinwen;Fu, Shengwei;Zhu, Kang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3732-3744
    • /
    • 2022
  • To investigate the effects of ocean conditions on the thermal stress and deformation caused by thermal stratification of a pressurizer surge line in a floating nuclear power plant (FNPP), the finite element simulation platform ANSYS Workbench is utilized to conduct the fluid-solid-thermal coupling transient analysis of the surge line under normal "wave-out" condition (no motion) and under ocean conditions (rolling and pitching), generating the transient response characteristics of temperature distribution, thermal stress and thermal deformation inside the surge line. By comparing the calculated results for the three motion conditions, it is found that ocean conditions can significantly improve the thermal stratification phenomenon within the surge line, but may also result in periodic oscillations in the temperature, thermal stress, and thermal deformation of the surge line. Parts of the surge line that are more susceptible to thermal fatigue damage or failure are determined. According to calculation results, the improvements are recommended for pipeline structure to reduce the effects of thermal oscillation caused by ocean conditions. The analysis method used in this study is beneficial for designing and optimizing the pipeline structure of a floating nuclear power plant, as well as for increasing its safety.

Analysis of the thermal behaviors of the cylinder block of a small gasoline engine (소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석)

  • 김병탁;박진무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

Thermal Characteristic Evaluation of Functionally Graded Composites for PSZ/Metal

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.298-305
    • /
    • 2000
  • The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/ metal composites. Heat-resistant property was evaluated by gas burner heating test using $C_2H_2/O_2$ combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermo mechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.

  • PDF

Numerical analysis of temperature fluctuation characteristics associated with thermal striping phenomena in the PGSFR

  • Jung, Yohan;Choi, Sun Rock;Hong, Jonggan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3928-3942
    • /
    • 2022
  • Thermal striping is a complex thermal-hydraulic phenomenon caused by fluid temperature fluctuations that can also cause high-cycle thermal fatigue to the structural wall of sodium-cooled fast reactors (SFRs). Numerical simulations using large-eddy simulation (LES) were performed to predict and evaluate the characteristics of the temperature fluctuations related to thermal striping in the upper internal structure (UIS) of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Specific monitoring points were established for the fluid region near the control rod driving mechanism (CRDM) guide tubes, CRDM guide tube walls, and UIS support plates, and the normalized mean and fluctuating temperatures were investigated at these points. It was found that the location of the maximum amplitude of the temperature fluctuations in the UIS was the lowest end of the inner wall of the CRDM guide tube, and the maximum value of the normalized fluctuating temperatures was 17.2%. The frequency of the maximum temperature fluctuation on the CRDM guide tube walls, which is an important factor in thermal striping, was also analyzed using the fast Fourier transform analysis. These results can be used for the structural integrity evaluation of the UIS in SFR.

Characteristics Analysis of Measurement Variables for Detecting Anomaly Signs of Thermal Runaway in Lithium-Ion Batteries (리튬이온 배터리의 열폭주 이상징후 감지를 위한 측정 변수 특성 분석)

  • LIM, BYUNG-JU;CHO, SUNG-HOON;LEE, GA-RAM;CHOI, SEOK-MIN;PARK, CHANG-DAE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • To detect anomaly signs of thermal runaway in advance, this study analyzed the signals from various sensors installed in lithium-ion batteries. The thermal runaway mechanism was analyzed, and measurement variables for anomalies of a battery cell were surface temperature, strain, and gas concentration. The changes and characteristics of three variables during the thermal runaway process were analyzed under the abuse environment: the overheat and the overcharge. In experiment, the thermal runaway of the battery proceeded in the initial developing stage, the outgassing stage, and the ignition stage. Analysis from the measured data indicated that the suitable variable to detect all stages of thermal runaway is the surface temperature of the battery, and surface strain is alternative.

Thermal and Flow Analysis of the Flat Tube with Micro-Channels (미세유로를 갖는 납작관의 열·유동 해석)

  • Chung, Kilyoan;Lee, Kwan-Soo;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.978-986
    • /
    • 1999
  • In this study, the general thermal and flow characteristics of flat tube with micro-channels has been studied and the correlation of Nusselt number and friction factor is proposed. The optimal flat tube geometry is determined by optimal design process. It is assumed to be a three dimensional laminar flow in the analysis of thermal and flow characteristics. The periodic boundary condition is applied since the geometry of flat tube with micro-channels shows uniform cross-section in primary flow direction. Local Nusselt number is examined for thermal characteristics of each membrane, and module average Nusselt number and friction factor are calculated to determine the characteristics of the heat transfer and pressure drop in overall flat tube with microchannels. The correlations between Nusselt number and friction factor are given by Reynolds number, aspect ratio of membranes, and the width of flat tube. ALM (Augmented Lagrangian Multiplier) method is applied to the correlations to determine an optimal shape of flat tube. It is shown that the optimal aspect ratio of flat tube is approximately 1.0, irrespective of the width of flat tube and Reynolds number.