• Title/Summary/Keyword: Thermal aggregation

Search Result 87, Processing Time 0.022 seconds

Molecular Chaperonic Function of C-Reactive Protein Induced by Heating in HT-29 Human Colon Carcinoma Cells

  • Lee, Soo-Young;Jung, Hyun-Jung;Kim, Hyun-Soo;Lee, Seung-Chul;Lee, Si-Back;Joe, Jae-Hoon;Kim, You-Mie
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.407-411
    • /
    • 2000
  • The effects of heat shock, or all-trans retinoic acid, on the expression of the C-reactive protein mRNA in the HT-29 human colon carcinoma cells, as well as the functional role of the C-reactive protein as a molecular chaperone, were studied. The expression level of the C-reactive protein mRNA in the HT-29 cells was increased time-dependently when exposed to heat-shock, and dose-dependently when treated with all-trans retinoic acid. The activities of transglutaminase C and K in the HT-29 cells were significantly increased when treated with all-trans retinoic acid. The C-reactive protein prevented thermal aggregation of the citrate synthase and stabilized the target enzyme, citrate synthase. The C-reactive protein promoted functional refolding of the urea-denatured citrate synthase up to 40-70%. These results suggest that the C-reactive protein, which is induced in human colon carcinoma cells, when heated or treated with all-trans retinoic acid has in a part functional activity of the molecular chaperone.

  • PDF

Molecular and Biochemical Characterization of Opisthorchis viverrini Calreticulin

  • Chaibangyang, Wanlapa;Geadkaew-Krenc, Amornrat;Vichasri-Grams, Suksiri;Tesana, Smarn;Grams, Rudi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.643-652
    • /
    • 2017
  • Calreticulin (CALR), a multifunctional protein thoroughly researched in mammals, comprises N-, P-, and C-domain and has roles in calcium homeostasis, chaperoning, clearance of apoptotic cells, cell adhesion, and also angiogenesis. In this study, the spatial and temporal expression patterns of the Opisthorchis viverrini CALR gene were analyzed, and calcium-binding and chaperoning properties of recombinant O. viverrini CALR (OvCALR) investigated. OvCALR mRNA was detected from the newly excysted juvenile to the mature parasite by RT-PCR while specific antibodies showed a wide distribution of the protein. OvCALR was localized in tegumental cell bodies, testes, ovary, eggs, Mehlis' gland, prostate gland, and vitelline cells of the mature parasite. Recombinant OvCALR showed an in vitro suppressive effect on the thermal aggregation of citrate synthase. The recombinant OvCALR C-domain showed a mobility shift in native gel electrophoresis in the presence of calcium. The results imply that OvCALR has comparable function to the mammalian homolog as a calcium-binding molecular chaperone. Inferred from the observed strong immunostaining of the reproductive tissues, OvCALR should be important for reproduction and might be an interesting target to disrupt parasite fecundity. Transacetylase activity of OvCALR as reported for calreticulin of Haemonchus contortus could not be observed.

Structural Studies on RUNX of Caenorhabditis elegans by Spectroscopic Methods

  • Son, Woo-Sung;Kim, Jong-Wan;Ahn, Hee-Chul;Park, Sung-Jean;Bae, Suk-Chul;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.1
    • /
    • pp.54-68
    • /
    • 2002
  • PEBP2/CBF (Polyomavirus Enhancer-core Binding Protein 2/Core Binding Factor), represents a new family of heterodimeric transcription factor. Those members play important roles in hematopoiesis and osteogenesis in mouse and human. PEBP2/CBF is a sequence-specific DNA binding protein. Each member of the PEBP2/CBF family of transcription factors is composed of two subunits, ${\alpha}$ and ${\beta}$. The evolutionarily conserved 128 amino acid region in ${\alpha}$ subunit has been called the Runt domain, which harbors two different activities, the ability to bind DNA and interact with the ${\beta}$ subunit. Recently, cDNA clones encoding the C. elegans Runt domain were isolated by screening a cDNA library. This gene was referred to run (Runt homologous gene). In this study, the basic experiments for the structural characterization of RUN protein were performed using spectroscopic methods. We have identified the structural properties of RUN using bioinformatics, CD and NMR. The limit temperature of the structural stability was up to 60$^{\circ}C$ with irreversible thermal process, and the structure of RUN seems to adopt ${\alpha}$ helices and one or more ${\beta}$ sheet or turn. The degree of NMR peak dispersion and intensity was increased by addition of glycine. Therefore, glycine could be used to alleviate the aggregation property of RUN in NMR experiment.

  • PDF

Preparation of Silver Nanoparticles with Various Morphology Using Amphiphilic Graft Copolymer Membranes (양쪽성 가지형 공중합막을 이용한 다양한 모양의 은 나노입자 제조)

  • Seo, Jin-Ah;Choi, Jin-Kyu;Ahn, Sung-Hoon;Yeon, Seung-Hyeon;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.169-172
    • /
    • 2010
  • Silver ions of poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) graft copolymer were reduced to form silver nanoparticles under thermal condition ($80^{\circ}C$). We were successful in synthesizing silver nanoparticles with various morphologies by changing reaction time. At short reaction times (~1 h), silver nanoparticles with 5 nm in size were formed without disrupting a microphase-separated structure of graft copolymer. At medium reaction times (~5 h), silver nanoparticles were aggregated to form large clusters ranging 30~50 nm in size. At much longer reaction times (~18 h), hurricane-like silver clusters were observed due to strong particle aggregation.

A Comparative Analysis of Thermal Properties of COB LED based on Thermoelectric Device Structure (열전소자 구조에 따른 COB LED의 방열 성능 비교 분석)

  • Kim, Hyo-Jun;Kang, Eun-Yeong;Im, Seong-Bin;Hoang, Geun-Chang;Kim, Yong-Kab
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.189-194
    • /
    • 2015
  • In this study, the heat radiation performance of COB LED according to the structure of thermoelectric device were compared. Thermoelectric device of the sheet copper structure and ceramic structure were used for bonding with the heating part of the COB LED. The temperature distribution in the bonding part of the thermoelectric device of COB LED was measured with a contact-type thermometer. The temperature variation of the thermoelectric device was measured by inputting the currents of 0.1A, 0.3A, 0.5A, and 0.7A. When 0.7A was applied, the temperature of the bonding part where there was a heat aggregation phenomenon of the COB LED was $59^{\circ}C$ for thermoelectric device of the sheet copper structure and $67^{\circ}C$ for the thermoelectric device of the ceramic structure. Therefore, the sheet copper thermoelectric device whose temperature was lower by $9^{\circ}C$ showed better heat radiation performance than those of the ceramic structure.

Tobacco mitochondrial small heat shock protein NtHSP24.6 adopts a dimeric configuration and has a broad range of substrates

  • Kim, Keun-Pill;Yu, Ji-Hee;Park, Soo-Min;Koo, Hyun-Jo;Hong, Choo-Bong
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.816-820
    • /
    • 2011
  • There is a broad range of different small heat shock proteins (sHSPs) that have diverse structural and functional characteristics. To better understand the functional role of mitochondrial sHSP, NtHSP24.6 was expressed in Escherichia coli with a hexahistidine tag and purified. The protein was analyzed by non-denaturing PAGE, chemical cross-linking and size exclusion chromatography and the $H_6NtHSP24.6$ protein was found to form a dimer in solution. The in vitro functional analysis of $H_6NtHSP24.6$ using firefly luciferase and citrate synthase demonstrated that this protein displays typical molecular chaperone activity. When cell lysates of E. coli were heated after the addition of $H_6NtHSP24.6$, a broad range of proteins from 10 to 160 kD in size remained in the soluble state. These results suggest that NtHSP24.6 forms a dimer and can function as a molecular chaperone to protect a diverse range of proteins from thermal aggregation.

Overexpression, Purification, and Characterization of $\beta$-Subunit of Group II Chaperonin from Hyperthermophilic Aeropyrum pernix K1

  • Shin, Eun-Jung;Lee, Jin-Woo;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kim, Yeon-Hee;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.542-549
    • /
    • 2010
  • In the present study, overexpression, purification, and characterization of Aeropyrum pernix K1 chaperonin B in E. coli were investigated. The chaperonin $\beta$-subunit gene (ApCpnB, 1,665 bp ORF) from the hyperthermophilic archaeon A. pernix K1 was amplified by PCR and subcloned into vector pET21a. The constructed pET21a-ApCpnB (6.9 kb) was transformed into E. coli BL21 Codonplus (DE3). The transformant cell successfully expressed ApCpnB, and the expression of ApCpnB (61.2 kDa) was identified through analysis of the fractions by SDS-PAGE (14% gel). The recombinant ApCpnB was purified to higher than 94% by using heat-shock treatment at $90^{\circ}C$ for 20 min and fast protein liquid chromatography on a HiTrap Q column step. The purified ApCpnB showed ATPase activity and its activity was dependent on temperature. In the presence of ATP, ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}$ and $50^{\circ}$, respectively. Specifically, the activity of malate dehydrogenase (MDH) at $85^{\circ}$ was greatly stabilized by the addition of ApCpnB and ATP. Coexpression of pro-carboxypeptidase B (pro-CPB) and ApCpnB in E. coli BL21 Codonplus (DE3) had a marked effect on the yield of pro-CPB as a soluble and active form, speculating that ApCpnB facilitates the correct folding of pro-CPB. These results suggest that ApCpnB has both foldase and holdase activities and can be used as a powerful molecular machinery for the production of recombinant proteins as soluble and active forms in E. coli.

Changes of Hydrophobicity, Solubility, SH Group and Protein-Protein Interaction in Yellowtail Myosin and Whelk Paramyosin During Thermal Denaturation (가열 변성에 따른 방어 Myosin과 갈색띠 매물고둥 Paramyosin의 소수성, 용해도, SH기 및 단백질간 상호작용의 변화)

  • Choi, Yeung-Joon;Pyeun, Jae-Hyeung
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 1987
  • The denaturation mechanism of the protein during heating of myosin and paramyosin extracted from the ordinary muscle of yellowtail (Seriola qrinqueradits) and the adductor muscle of whelk (Neptunea arthritica cuming) were investigated by analyzing the hydrophobicity, solubility, SH group and protein-protein interaction. The free hydrophobic residue of the two proteins were increased by increase of heating temperature up to $65^{\circ}C$ and then decreased for further temperature raise. The protein-protein interaction was proportional to the increment of the free hydrophobic residue. The aggregation of protein was begun from $65^{\circ}C$ with the decrease of the free hydrophobic residues. The results of Arrhenius equation for the data on proteinprotein interaction showed that the denaturation course was made up with multi-steps in the myosin and two-steps in the paramyosin. The number of free hydrophobic residue and SH group, solubility and protein-protein interaction were significantly differed with the denaturation temperature (p<0.01).

  • PDF

Microstructure and Electrical Resistivity of Ink-Jet Printed Nanoparticle Silver Films under Isothermal Annealing (잉크젯 프린팅된 은(Ag) 박막의 등온 열처리에 따른 미세조직과 전기 비저항 특성 평가)

  • Choi, Soo-Hong;Jung, Jung-Kyu;Kim, In-Young;Jung, Hyun-Chul;Joung, Jae-Woo;Joo, Young-Chang
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.453-457
    • /
    • 2007
  • Interest in use of ink-jet printing for pattern-on-demand fabrication of metal interconnects without complicated and wasteful etching process has been on rapid increase. However, ink-jet printing is a wet process and needs an additional thermal treatment such as an annealing process. Since a metal ink is a suspension containing metal nanoparticles and organic capping molecules to prevent aggregation of them, the microstructure of an ink-jet printed metal interconnect 'as dried' can be characterized as a stack of loosely packed nanoparticles. Therefore, during being treated thermally, an inkjet-printed interconnect is likely to evolve a characteristic microstructure, different from that of the conventionally vacuum-deposited metal films. Microstructure characteristics can significantly affect the corresponding electrical and mechanical properties. The characteristics of change in microstructure and electrical resistivity of inkjet-printed silver (Ag) films when annealed isothermally at a temperature between 170 and $240^{\circ}C$ were analyzed. The change in electrical resistivity was described using the first-order exponential decay kinetics. The corresponding activation energy of 0.44 eV was explained in terms of a thermally-activated mechanism, i.e., migration of point defects such as vacancy-oxygen pairs, rather than microstructure evolution such as grain growth or change in porosity.

A Cytosolic Thioredoxin Acts as a Molecular Chaperone for Peroxisome Matrix Proteins as Well as Antioxidant in Peroxisome

  • Du, Hui;Kim, Sunghan;Hur, Yoon-Sun;Lee, Myung-Sok;Lee, Suk-Ha;Cheon, Choong-Ill
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.187-194
    • /
    • 2015
  • Thioredoxin (TRX) is a disulfide reductase present ubiquitously in all taxa and plays an important role as a regulator of cellular redox state. Recently, a redox-independent, chaperone function has also been reported for some thioredoxins. We previously identified nodulin-35, the subunit of soybean uricase, as an interacting target of a cytosolic soybean thioredoxin, GmTRX. Here we report the further characterization of the interaction, which turns out to be independent of the disulfide reductase function and results in the co-localization of GmTRX and nodulin-35 in peroxisomes, suggesting a possible function of GmTRX in peroxisomes. In addition, the chaperone function of GmTRX was demonstrated in in vitro molecular chaperone activity assays including the thermal denaturation assay and malate dehydrogenase aggregation assay. Our results demonstrate that the target of GmTRX is not only confined to the nodulin-35, but many other peroxisomal proteins, including catalase (AtCAT), transthyretin-like protein 1 (AtTTL1), and acyl-coenzyme A oxidase 4 (AtACX4), also interact with the GmTRX. Together with an increased uricase activity of nodulin-35 and reduced ROS accumulation observed in the presence of GmTRX in our results, especially under heat shock and oxidative stress conditions, it appears that GmTRX represents a novel thioredoxin that is co-localized to the peroxisomes, possibly providing functional integrity to peroxisomal proteins.