• 제목/요약/키워드: Thermal aggregation

검색결과 87건 처리시간 0.03초

Effects of ${\alpha}$-Chymotrypsin Modification on the Functional Properties of Soy Protein Isolates

  • Ahn Tae-Hyun;Lee Sook-Young
    • 한국작물학회지
    • /
    • 제51권2호
    • /
    • pp.148-153
    • /
    • 2006
  • Effects of ${\alpha}$-chymotrypsin modification on degree of hydrolysis (DH), solubility, emulsifying capacity and thermal aggregation of laboratory-purified soy protein isolate (SPI) using a lipoxygenase-defected soybean (Jinpum-kong) and commercial soy protein isolate (Supro 500E) were compared. SPIs were hydrolyzed by ${\alpha}$-chymotrypsin at pH 7.8 and $37^{\circ}C$ for 30 min. DHs of Supro 500E and Jinpum-kong SPI were increased by ${\alpha}$-chymotrypsin modification, and DH of Supro 500E was higher than that of Jinpum-kong SPI. DH of ${\alpha}$-chymotrypsin treated Jinpum-kong SPI was similar with untreated Supro 500E and DH of treated Supro 500E was the highest. Solubility, emulsifying capacity and thermal aggregation of SPIs were increased by ${\alpha}$-chymotrypsin modification, and these changes were highly related to changes in DH. Functional properties of Supro 500E were higher than Jinpum-kong SPI in both of untreated and ${\alpha}$-chymotrypsin treated SPIs.

Cooperativity of ${\alpha}$- and ${\beta}$-Subunits of Group II Chaperonin from the Hyperthermophilic Archaeum Aeropyrum pernix K1

  • Kim, Jeong-Hwan;Lee, Jin-Woo;Shin, Eun-Jung;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.212-217
    • /
    • 2011
  • ${\alpha}$ and ${\beta}$-subunits (ApCpnA and ApCpnB) are group II chaperonins from the hyperthermophilic archaeum Aeropyrum pernix K1, specialized in preventing the aggregation and inactivation of substrate proteins under conditions of transient heat stress. In the present study, the cooperativity of ${\alpha}$- and ${\beta}$-subunits from the A. pernix K1 was investigated. The ApCpnA and ApCpnB chaperonin genes were overexpressed in E. coli Rosetta and Codonplus (DE3), respectively. Each of the recombinant ${\alpha}$- and ${\beta}$-subunits was purified to 92% and 94% by using anionexchange chromatography. The cooperative activity between purified ${\alpha}$- and ${\beta}$-subunits was examined using citrate synthase (CS), alcohol dehydrogenase (ADH), and malate dehydrogenase (MDH) as substrate proteins. The addition of both ${\alpha}$- and ${\beta}$-subunits could effectively protect CS and ADH from thermal aggregation and inactivation at $43^{\circ}C$ and $50^{\circ}C$, respectively, and MDH from thermal inactivation at $80^{\circ}C$C and $85^{\circ}C$. Moreover, in the presence of ATP, the protective effects of ${\alpha}$- and ${\beta}$-subunits on CS from thermal aggregation and inactivation, and ADH from thermal aggregation, were more enhanced, whereas cooperation between chaperonins and ATP in protection activity on ADH and MDH (at $85^{\circ}C$) from thermal inactivation was not observed. Specifically, the presence of both ${\alpha}$- and ${\beta}$- subunits could effectively protect MDH from thermal inactivation at $80^{\circ}C$ in an ATP-dependent manner.

Nucleotide and Manganese Ion is Required for Chaperonin Function of the Hyperthermostable Group II Chaperonin α from Aeropyrum pernix K1

  • Jang, Kyoung-Jin;Bae, Yu-Jin;Jeon, Sung-Jong;Kim, Kyung-Hwa;Lee, Jung-Hee;Yea, Sung-Su;Oh, Sang-Taek;Jeong, Yong-Joo;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2261-2265
    • /
    • 2007
  • Prevention of thermal aggregation of the denatured protein by the group II chaperonin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1 (ApcpnA) has been investigated. ApcpnA exists as a homo-oligomer in a ring structure, which protects thermal aggregation of the chemically denatured bovine rhodanese at 50 oC. ApcpnA alone is not sufficient for chaperonin activity, but the chaperonin activity is greatly enhanced in the presence of manganese ion and ATP. Compared to the mesophilic chaperonin GroEL/GroES, ApcpnA is more activated at a higher temperature and protects the aggregation-prone unfolded state of the denatured rhodanese from thermal aggregation. Binding of ATP is sufficient for ApcpnA to perform the chaperonin function in vitro, but hydrolysis of ATP is not necessarily required. We propose that utilization of Mn2+ and adenosine nucleotide regardless of ATP hydrolysis may be one of peculiar properties of archaeal chaperonins.

Inhibition of Citrate Synthase Thermal Aggregation In Vitro by Recombinant Small Heat Shock Proteins

  • Gong, Weina;Yue, Ming;Xie, Bingyan;Wan, Fanghao;Guo, Jianying
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1628-1634
    • /
    • 2009
  • Small heat shock proteins (sHSPs) function as molecular chaperones that protect cells against environmental stresses. In the present study, the genes of hsp17.6 and hsp17.7, cytosolic class I sHSPs, were cloned from a tropical plant, Ageratina adenophorum. Their C-terminal domains were highly conserved with those of sHSPs from other plants, indicating the importance of the C-terminal domains for the structure and activity of sHSPs. The recombinant HSP17.6 and HSP17.7 were applied to determine their chaperone function. In vitro, HSP17.6 and HSP17.7 actively participated in the refolding of the model substrate citrate synthase (CS) and effectively prevented the thermal aggregation of CS at $45^{\circ}C$ and the irreversible inactivation of CS at $38^{\circ}C$ at stoichiometric levels. The prior presence of HSP17.7 was assumed to suppress the thermal aggregation of the model substrate CS. Therefore, this report confirms the chaperone activity of HSP17.6 and HSP17.7 and their potential as a protectant for active proteins.

지르코니아를 담지한 할로이사이트 나노튜브를 충진재로 이용한 에폭시 복합체의 기계적 열적 특성 분석 (Analysis of Mechanical and Thermal Properties of Epoxy Complex using Zirconia Supported Halloysite Nanotubes as Filler)

  • 김문일
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.461-466
    • /
    • 2022
  • Epoxy resins are widely used in various industrial fields. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with The zirconia impregnated HNTs (Zr/HNT) were investigated. Zr/HNT were characterized by Scanning electron microscope (SEM), transmittance electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy. The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and the mechanical strength of the epoxy composites (flexural strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy complex with Zr/HNT were improved compared to those of the epoxy complex with HNT, and also increased as the content of Zr/HNT increased.

나노유체 특성에 따른 히트파이프 성능해석 (Theoretical Analysis of Heat Pipe Thermal Performance According to Nanofluid Properties)

  • 임승민
    • 대한기계학회논문집B
    • /
    • 제39권7호
    • /
    • pp.599-607
    • /
    • 2015
  • 본 연구에서는 나노유체의 유동학 특성을 반영한 히트파이프 열적특성을 연구하였다. $Al_2O_3$와 CuO 나노입자를 적용한 나노유체를 작동유체로 하여 나노입자 부피비와 응집도에 대한 히트파이프 성능을 확인하였다. 나노입자의 부피비와 응집도가 증가할수록 점성과 열전도도는 증가하는 것으로 나타났으며 두 인자는 히트파이프 성능에 영향을 주었다. 나노입자응집이 없는 경우에는 나노입자의 부피비 증가가 모세관압력한계 성능을 향상시켰지만 응집도가 증가하면 입자부피비가 증가해도 모세관압력한계가 감소했다. 그리고 나노입자의 열전도도, 부피비, 응집도에 대한 히트파이프 열저항을 분석하였다. 히트파이프의 투과율이 높을수록 최대열수송량은 입자부피비에 미치는 영향이 컸으며 3차원 그래프를 통해 윅 특성에 대한 최적화된 나노입자부피비를 확인하였다.

하전입자의 응집성장에 대한 수치적 연구 (Numerical Simulation for the Aggregation of Charged Particles)

  • 박형호;김상수;장혁상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.605-611
    • /
    • 2001
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was $D_{f}=1.761$. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states.

  • PDF

Synthesis, Photophysical and Aggregation Properties of Novel Phenanthrene and Pyrene Substituted Phthalocyanines

  • Kumar, Rangaraju Satish;Son, Young-A
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.792-797
    • /
    • 2018
  • We have explained the synthesis of novel phenanthrene and pyrene substituted phthalocyanines (PC-PHE and PC-PYR) and fully confirmed the structures by its spectral, photo physical and elemental analysis. For these phthalocyanines we checked the UV-Visible absorbance in PGMEA and chloroform and transmittance checked in PGMEA. The transmittance results suggested that these phthalocyanines are showing more than 90% transmittance at the 450-550 nm region. These synthesized molecules are nicely soluble in almost all industrial solvents. We checked the aggregation property of these phthalocyanines in PGMEA, and the results suggested no any aggregation for these molecules in PGMEA. The thermogravimetric analysis results concluded that PC-PHE and PC-PYR had high thermal stability. All studies explain that these new phthalocyanines are more suitable for LCD green color filter application.

Dynamic Tracking Aggregation with Transformers for RGB-T Tracking

  • Xiaohu, Liu;Zhiyong, Lei
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.80-88
    • /
    • 2023
  • RGB-thermal (RGB-T) tracking using unmanned aerial vehicles (UAVs) involves challenges with regards to the similarity of objects, occlusion, fast motion, and motion blur, among other issues. In this study, we propose dynamic tracking aggregation (DTA) as a unified framework to perform object detection and data association. The proposed approach obtains fused features based a transformer model and an L1-norm strategy. To link the current frame with recent information, a dynamically updated embedding called dynamic tracking identification (DTID) is used to model the iterative tracking process. For object association, we designed a long short-term tracking aggregation module for dynamic feature propagation to match spatial and temporal embeddings. DTA achieved a highly competitive performance in an experimental evaluation on public benchmark datasets.

Screening Molecular Chaperones Similar to Small Heat Shock Proteins in Schizosaccharomyces pombe

  • Han, Jiyoung;Kim, Kanghwa;Lee, Songmi
    • Mycobiology
    • /
    • 제43권3호
    • /
    • pp.272-279
    • /
    • 2015
  • To screen molecular chaperones similar to small heat shock proteins (sHsps), but without ${\alpha}$-crystalline domain, heat-stable proteins from Schizosaccharomyces pombe were analyzed by 2-dimensional electrophoresis and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Sixteen proteins were identified, and four recombinant proteins, including cofilin, NTF2, pyridoxin biosynthesis protein (Snz1) and Wos2 that has an ${\alpha}$-crystalline domain, were purified. Among these proteins, only Snz1 showed the anti-aggregation activity against thermal denaturation of citrate synthase. However, pre-heating of NTF2 and Wos2 at $70^{\circ}C$ for 30 min, efficiently prevented thermal aggregation of citrate synthase. These results indicate that Snz1 and NTF2 possess molecular chaperone activity similar to sHsps, even though there is no ${\alpha}$-crystalline domain in their sequences.