• Title/Summary/Keyword: Thermal Wave

Search Result 545, Processing Time 0.027 seconds

Analysis of Passive Cooling Effect of Membrane Shading Structure and the Tree by Field Observations in the Summer (하절기 복사환경 관측을 통한 수목과 일사차폐 막 구조물의 자연냉각효과)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.137-146
    • /
    • 2007
  • This study is about the passive cooling effects of three outdoor solar shading facilities as trees, pergola with wistaria vine and membrane shading structure, which are expected to provide cool spots in the summer. Field observations of measuring thermal environment of selected facilities is executed. Thermal environment measuring was categorized as short wave radiation, long wave radiation, net radiation, globe temperature, surface temperature measured by infrared camera. Heat transfer mechanism is analyzed with overall data from field measurement. Results from this study are as below; 1) Radiation balance measured on shaded surface under membrane shading structure was 17%($86W/m^2$) of the unshaded surface radiation balance($511W/m^2$). 2) Surface temperature comparison between vegetation and membrane of the shading structure is performed at 3 o'clock in the afternoon. Surface temperature of vegetation was same as air temperature and that of membrane was $5^{\circ}C$ higher than air temperature. Vegetation transpiration is considered as the causing factor which make those differences. 3) Results from this study could be used as fundamental data for reducing heat island phenomena and continuos research on this subject would be needed.

Nonlinear Combustion Instability Analysis of Solid Rocket Motor Based on Experimental Data

  • Wei, Shaojuan;Liu, Peijin;Jin, Bingning
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.58-61
    • /
    • 2015
  • Combustion instability in solid rocket motors is a long-term open problem since the first rockets were used. Based on the numerous previous studies, it is known that the limit cycle amplitude is one of the key characteristics of the nonlinear combustion instability in solid rocket motors. Flandro's extended energy balance corollary, aims to predict the limit cycle amplitude of complex, nonlinear pressure oscillations for rockets or air-breathing engines, and leads to a precise assessment of nonlinear combustion instability in solid rocket motors. However, based on the comparison with experimental data, it is revealed that the Flandro's method cannot accurately describe such a complex oscillatory pressure. Thus in this work we make modifications of the nonlinear term in the nonlinear wave equations which represents the interaction of different modes. Through this modified method, a numerical simulation of the cylindrical solid rocket has been carried out, and the simulated result consists well with the experimental data. It means that the added coefficient makes the nonlinear wave growth equations describe the experimental data better.

The Damage of Microcontroller Devices due to Coupling Effects by High Power Electromagnetic Wave (고출력 전자기파의 커플링 효과에 의한 마이크로컨트롤러 소자의 피해)

  • Hong, Joo-Il;Hwang, Sun-Mook;Huh, Chang-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.148-155
    • /
    • 2008
  • We investigated the damage effects of microcontroller devices under high power electromagnetic(HPEM) wave. HPEM wave was radiated from the open-ended standard rectangular waveguide(WR-340) to free space. The influence of different reset-, clock-, data-, and power supply-line lengths has been tested. The susceptibility of the tested microcontroller devices was in general much influenced by clock-, reset-, and power supply-line length, little influenced by data-line length. Further the line length was increased, the malfunction threshold was decreased as expected, because more energy couples to the devices. The surfaces of the destroyed microcontroller devices were removed and the chip conditions were investigated with microscope. The microscopic analysis of the damaged devices showed component and bondwire destructions such as breakthroughs and melting due to thermal effects.

Temperature Measurement of Silicon Wafers Using Phase Estimation of Acoustic Wave (음향파의 위상 추정을 이용한 실리콘 웨이퍼의 온도 측정)

  • Joonhyuk Kang;Lee, Seokwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.493-495
    • /
    • 2003
  • Accurate temperature measurement is a key factor to implement the rapid thermal processing(RTP). A temperature estimation method using acoustic wave has been proposed to overcome the inaccuracy and contamination problem of the previous methods. The proposed method, however, may suffer from the offset and low resolution problem since it is implemented in the time domain. This paper presents a temperature estimation method using the phase detection of acoustic wave. Based on the frequency domain approach, the proposed technique increases the resolution of the measured temperature and reduces the effect of noise. We investigate the performance of the proposed method via experiments.

INSTABILITY OF OBLIQUE SHOCK WAVES WITH HEAT ADDITION (후방 발열이 있는 경사 충격파의 불안정성)

  • Choi, J.Y.;Shin, J.R.;Cho, D.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.232-235
    • /
    • 2007
  • A comprehensive numerical study was carried out to identify the on-set condition of the cell structures of oblique detonation waves (ODWs). Mach 7 incoming flow was considered with all other flow variables were fixed except the flow turning angles varying from 35 to 38. For a given flow conditions theoretical maximum turning angle is $38.2^{\circ}$ where the oblique detonation wave may be stabilized. The effects of grid resolution were tested using grids from $255{\times}100$ to $4,005{\times}1,600$. The numerical smoked foil records exhibits the detonation cell structures with dual triple points running opposite directions for the 36 to 38 turning angles. As the turning angle get closer to the maximum angle the cell structures gets finer and the oscillatory behavior of the primary triple point was observed. The thermal occlusion behind the oblique detonation wave was observed for the $38^{\circ}$ turning angle.

  • PDF

Numerical Analysis of a Weak Shock Wave Propagating in a Medium Using Lattice Boltzmann Method (LBM)

  • Kang, Ho-Keun;Michihisa Tsutahara;Ro, Ki-Deok;Lee, Young-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2034-2041
    • /
    • 2003
  • This study introduced a lattice Boltzmann computational scheme capable of modeling thermo hydrodynamic flows with simpler equilibrium particle distribution function compared with other models. The equilibrium particle distribution function is the local Maxwelian equilibrium function in this model, with all the constants uniquely determined. The characteristics of the proposed model is verified by calculation of the sound speeds, and the shock tube problem. In the lattice Boltzmann method, a thermal fluid or compressible fluid model simulates the reflection of a weak shock wave colliding with a sharp wedge having various angles $\theta$$\sub$w/. Theoretical results using LBM are satisfactory compared with the experimental result or the TVD.

Propagation of plane wave in transversely isotropic magneto-thermoelastic material with multi-dual-phase lag and two temperature

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.411-432
    • /
    • 2020
  • This research is devoted to the study of plane wave propagation in homogeneous transversely isotropic (HTI) magneto-thermoelastic rotating medium with combined effect of Hall current and two temperature due to multi-dual-phase lag heat transfer. It is analysed that, for 2-D assumed model, three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) are present. The wave characteristics like phase velocity, specific loss, attenuation coefficients, energy ratios, penetration depths and amplitude ratios of transmitted and reflected waves are computed numerically and illustrated graphically and compared for different theories of thermoelasticity. Some particular cases are also derived from this research.

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.