• Title/Summary/Keyword: Thermal Transient

Search Result 914, Processing Time 0.03 seconds

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

Transient Simulation of an Automotive Air-Conditioning System (자동차 에어컨 비정상과정 시뮬레이션)

  • 오상한;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF

Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids (알루미나/산화아연/이산화티타늄 나노유체의 열전도율 측정)

  • Kim Sang Hyun;Choi Sun Rock;Hong Jonggan;Kim Dongsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1065-1073
    • /
    • 2005
  • The thermal conductivity of water- and ethylene glycol-based nanofluids containing alumina $(Al_2O_3)$, zinc oxide (ZnO) and titanium dioxide $(TiO_2)$ nanoparticles is measured by varying the particle diameter and volume fraction. The transient hot-wire method using an anodized tantalum wire for electrical insulation is employed for the measurement. The experimental results show that nanofluids have substantially higher thermal conductivities than those of the base fluid and the ratio of thermal conductivity enhancement increases linearly with the volume fraction. It has been found that the ratio of thermal conductivity enhancement increases with decreasing particle size but no empirical or theoretical correlation can explain the particle-size dependence of the thermal conductivity. This work provides, for the first time to our knowledge, a set of consistent experimental data over a wide range of nanofluid conditions and can therefore serve as a basis for developing theoretical models to predict thermal conduction phenomena in nanofluids.

A study on the detection method of inner's crack of STS304 pipe using Ultrasonic Testing (초음파 검사법을 이용한 STS304 배관재 내부 균열 측정 방법에 대한 연구)

  • Hwang, Woong-Gi;Lee, Kyung-Min;Woo, Young-Kwan;Seo, Duck-Hee;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.415-418
    • /
    • 2011
  • Thermal fatigue is one of the life-limiting damage mechanisms in the nuclear power plant conditions. The turbulent mixing of fluids of different temperatures induces rapid temperature changes to the pipe wall. The successive thermal transients cause varying cyclic thermal stresses. These cyclic thermal stresses cause fatigue crack nucleation and growth similar to the cyclic mechanical stresses. The aim of this study was to fulfil the need by developing an real crack manufacturing method, which would produce realistic cracks. The test material was austenitic STS 304, which is used as pipelines in the reactor coolant system of a nuclear power plants. In order to fabricate thermal fatigue crack similar to realistic crack, successive thermal transients were applied to the specimen. Thermal transient cycles were combined with heating (60sec) and cooling cycle (30sec). And, In order to identify ultrasonic characteristic, it was performed the ultrasonic reflection measuring method for the fabricated specimen. From the results of ultrasonic reflection measuring testing, it was conformed that A-scan results(average 83% of real crack depth) for the TFC reference specimen was more enhanced NDT reliability than results(average 38% of real crack depth) for the EDM notch reference specimen.

  • PDF

An Experimental Study on the Heat Transfer Characteristics of a High-temperature Sodium Heat Pipe Depending on the Thermal Transport Conditions (고온 나트륨 히트파이프에서 열이송 조건에 따른 열전달 특성에 대한 실험 연구)

  • Park, C.M.;Boo, J.H.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2340-2345
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature application was manufactured and tested for transient and steady-state operations. Two layers of Stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. As thermal transport conditions, the effective transport length, the heat flux, the tilt angle and the operating temperature were varied. The heat was supplied by an electric furnace up to 1 kW and the cooling was performed by forced convection of air. The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total thermal resistance was as low as $0.036^{\circ}C/W$ at $175.8\;kW/m^2$ of heat flux and $700^{\circ}C$ of operating temperature.

  • PDF

A Study on Performance of Seasonal Borehole Thermal Energy Storage System Using TRNSYS (TRNSYS를 이용한 Borehole 방식 태양열 계간축열 시스템의 성능에 관한 연구)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.37-47
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a glass greenhouse was analyzed numerically. For this study, the gardening 16th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And, the heating load of the glass greenhouse selected was 576 GJ. BTES (Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modeling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump, controller. As a result of the analysis, the energy of 928 GJ from the flat plate solar collector was stored into BTES system and 393 GJ of energy from BTES system was extracted during heating period, so that it was confirmed that the thermal efficiency of BTES system was 42% in 5th year. Also since the heat supplied from the auxiliary boiler was 87 GJ in 5th year, the total annual heating demand was confirmed to be mostly satisfied by the proposed system.

Evaluation of Indoor Thermal Comfort for Ceiling Type System Air-Conditioner with Various Discharge Angles (천장형 시스템 에어컨의 토출방향 변화에 따른 실내 열쾌적성 평가)

  • Lee, Jin-Hyung;Kim, You-Jae;Choi, Weon-Seok;Park, Sung-Kwan;Youn, Baek;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1180-1185
    • /
    • 2006
  • Modern people spend most of time at indoor space, such as office or classroom. Especially, occupants are exposed to the airtight indoor air quality (IAQ) for a long time, At present, many studies on the air-conditioning systems are more focused on the individual thermal comfort than the thermal efficiency due to increase of the concern of health. There are several factors which are influenced thermal comfort, such as temperature, humidity, convection and air movement, etc. Also, the individual factor, such as age, gender, Physical constitution and habit, should be considered. The 4-way cassette type air conditioner is known to bring out better performance about thermal comfort than the traditional one. This study is performed on the higher ceiling environment than the common buildings or classrooms. Also, this study analyzed on the Indoor thermal comfort by diffusing direction of 4-way cassette air conditioner with various discharge angles, $45^{\circ},\;50^{\circ},\;55^{\circ}$ and $60^{\circ}$. Using a commercial code, FLUENT, three-dimensional transient air thermal flow fields are calculated with appropriate wall boundary conditions and standard $k-{\epsilon}$ turbulence model. Results of velocity and temperature distributions are graphically depicted with various discharge angles.

  • PDF

Thermal Characterization and Analysis of High Power Ceramic LED Package (고출력 세라믹 LED 패키지의 방열 특성 평가 및 해석 연구)

  • Cho, Hyun-Min;Choi, Won-Kil;Jung, Bong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.315-316
    • /
    • 2009
  • 본 논문에서는 1W 급 이상의 고출력 LED 용 패키지로서 세라믹 LTCC 적층 패키지의 방열 특성을 평가하고 열해석 결과와의 차이에 대해 고찰하였다. 특히, 세라믹 패키지의 방열 특성을 향상시키기 위해 Thermal Via와 Heat slug를 LED Chip 하단부에 위치시켰을 때 방열 특성을 평가하기 위해 Transient Thermal Test를 이용하여 각각의 경우에 대한 열저항을 평가하여 방열 특성의 항상 정도를 확인하였으며, 열해석 시뮬레이션을 통해 얻은 결과와 비교하였다. 평가 결과 Heat slug를 배치한 패키지가 열저항이 $8^{\circ}C/W$로서 가장 우수한 특성을 보여주었으며, 열해석 결과와의 차이에 대해서는 광출력으로 방출된 전력을 계산하여 보정함으로써 $1^{\circ}C$ 이하의 편차를 보여주는 결과를 얻을 수 있었다.

  • PDF

A Feasibility Study on the Use of Autogeneous GTAW for Correction of Distortions in Welded Aluminum Alloy Structures (알루미늄 熔接構造物의 變形橋正을 위한 Autogeneous GTAW의 適用 可能性 硏究)

  • 하용훈;강춘식;유순영
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.20-34
    • /
    • 1992
  • Characteristics of two correcting methods, a new Autogeneous GTAW heating (TIG) method and the conventional GMAW bead-on plate welding(MIG) method, for distorted aluminum fabrication structures were studied. As a result of microscopic study of Autogeneous GTAW heating and GMAW bead-on plate welding areas, porosities in weld metal and surface cracks in local heating zone were found. Through the mechanical tests, it was verified that porosities decrease tensile strength and surface of distortion, angular displacement and transeverse shrinkage were measures and compared. In order to investigate changes of material properties in heating area and cause of defects such thermal stresses were calculated by ADINA. Through the computations of transient thermal stresses and microscopic observation of fracture surface, thermal stress was found to be the cause of crack during Autogeneous GTAW heating.

  • PDF

Finite Element Analysis of Effect of Preheating on the Residual Stress in 304 Stainless Steel Weldment (304 스테인레스강 용접부 잔류응력에 미치는 예열 효과의 유한요속 해석)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.67-75
    • /
    • 1998
  • This study aimed at he experimental and finite element analytic investigation of the effect of preheating on he residual stress of weldment. In this study, an autogenous arc welding was used on type 304 stainless steel and MARC as F.E.M. common code was utilized in analysis The analyses include transient and moving heat source and thermal properties as function of temperature. During welding, the thermal cycles of four locations in the weldment were recorded to investigate of the behavior of thermal stress and residual stress. The experimental and analytic results had good coincidence and show that there are two factors influencing the formation of welding residual stress in preheat process. One is the elevation of welding equilibrium temperature and the other is the increase of amount of heat input. The former decrease welding residual stress and the latter increase welding residual stress. Therefore, the cumulative effects result in the welding residual stress not being improved significantly with preheating in 304 stainless steel.

  • PDF