• 제목/요약/키워드: Thermal Transient

검색결과 909건 처리시간 0.027초

EPS foam 의 선형 열선절단시 일반 절단경사각의 제품 정밀도에 미치는 영향에 관한 연구 (A study on influence of cutting angle on the thermal characteristics in the linear heat cutting of EPS foam in case of generally sloped cutting)

  • 안동규;이상호;김효찬;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.176-180
    • /
    • 2002
  • All types of VLM-s process include the linear heat cutting of EPS foam to generate a layer with 3D shape. The dimensional accuracy and part quality of the cut part are dependent on the thermal characteristics in the EPS foam. The thermal characteristics are determined by operating parameters such as an effective heat input and cutting angle. The objective of this study is to investigate into the influence of cutting angle on the kerfwidth and the melted length of the cut part using the numerical analysis and the experiments in generally sloped cutting with two cutting angles. In order to estimate an accurate temperature field, the transient thermal analysis using moving coordinate system, the fully conformed mesh and the heat flux model with two cutting angles is carried out. From the results of the analysis and the experiments, it has been found that the influence of the rotational angle about x-axis in which the rotational axis is normal with hotwire cutting direction is appreciably negligible in comparison with that of the rotational angle about y-axis.

  • PDF

Uncertainty Analysis of Dynamic Thermal Rating of Overhead Transmission Line

  • Zhou, Xing;Wang, Yanling;Zhou, Xiaofeng;Tao, Weihua;Niu, Zhiqiang;Qu, Ailing
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.331-343
    • /
    • 2019
  • Dynamic thermal rating of the overhead transmission lines is affected by many uncertain factors. The ambient temperature, wind speed and wind direction are the main sources of uncertainty. Measurement uncertainty is an important parameter to evaluate the reliability of measurement results. This paper presents the uncertainty analysis based on Monte Carlo. On the basis of establishing the mathematical model and setting the probability density function of the input parameter value, the probability density function of the output value is determined by probability distribution random sampling. Through the calculation and analysis of the transient thermal balance equation and the steady- state thermal balance equation, the steady-state current carrying capacity, the transient current carrying capacity, the standard uncertainty and the probability distribution of the minimum and maximum values of the conductor under 95% confidence interval are obtained. The simulation results indicate that Monte Carlo method can decrease the computational complexity, speed up the calculation, and increase the validity and reliability of the uncertainty evaluation.

비함침 초전도마그네트의 과도안정성 (Transient Stability in Dry-winding Superconducting Magnets)

  • 김석범;석산돈사;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.89-91
    • /
    • 1996
  • In dry-winding(unfilled) superconducting magnets, the behavior of liquid helium occupying the extremely small void space within the winding is contributed as a primary factor for transient stability of magnets. Therefore, numerical experiments have been carried out concerning the influences of transient heat transfer of liquid helium ocupying the void space in the winding and thermal properties of insulation at the conductor surface on the transient stability of magnets, by using three-dimensional finite element method(FEM). In this paper, we are going to consider three different cases for heat transfer characteristics of liquid helium to observe the influences of the rest of liquid helium in void space within the winding on the transient stability.

  • PDF

마이크로채널 기판에서 비정상 복합 열전달의 수치적 연구 (NUMERICAL STUDY OF TRANSIENT CONJUGATE HEAT TRANSFER IN A MICRO-CHANNEL SUBSTRATE)

  • 이희준
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.87-92
    • /
    • 2012
  • A numerical study of transient conjugate heat transfer on micro heater in a micro-channel substrate under pulsed heating was conducted. It was found that the time constant is not affected by the pulse heating magnitude at same operating condition. Furthermore, the time constant increases with low substrate thermal diffusivity, low Reynolds number, and large channel diameter. Since the time constant is a dominant parameter to characterize transient heat transfer, it should be considered for transient convective heat transfer coefficient.

과도에너지 함수를 이용하여 연계계통의 총송전용량 평가를 위한 최적화기법 응용 (Optimization Application for Assessment of Total Transfer Capability Using Transient Energy Function in Interconnection Systems)

  • 김규호;김수남;이상봉;이상근;송경빈
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2311-2315
    • /
    • 2009
  • This paper presents a method to apply energy margin for assesment of total transfer capability (TTC). In order to calculate energy margin, two values of the transient energy function have to be computed. The first value is transient energy that is the sum of kinetic and potential energy at the end of fault. The second is critical energy that is potential energy at controlling UEP(Unstable Equilibrium Point). It is seen that TTC level is determined by not only bus voltage magnitudes and line thermal limits but also transient stability. TTC assessment is compared by the repeated power flow(RPF) method and optimization method.

적외선 센서 냉각용 극저온 용기의 과도 냉각 특성에 관한 수치해석 (Numerical Analysis on the Transient Cooling Characteristics of an Infrared Detector Cryochamber)

  • 이정훈;김호영;강병하
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권2호
    • /
    • pp.68-72
    • /
    • 2002
  • This work investigates the transient cooling characteristics of an Infrared (IR) detector cryochamber, which has a critical effect on the cooling load. The current thermal modeling considers the conduction heat transfer through a cold well. the gaseous conduction due to outgassing. and the radiation heat transfer. The transient cooling Performance. i.e. the penetration depth and cooling load, is determined using a finite difference method. It is found that the penetration depth increases as the bore conductivity increases. Gaseous conduction and radiation hardly affect the penetration depth. The transient cooling load increases as the bore conductivity increases. The effects of gaseous conduction and radiation on transient heat transfer are weak at initial stages of cooling. However, their effects become significant as the cooling Process Proceeds.

2영역 튜브모텔을 고려한 CANDU 시뮬레이션용 DSNP 증기발생기 모델 개선 (Improvement of Steam Generator Model for DSNP with Two-Region Tube Bundle Model for CANDU Transient Simulation)

  • Cheon, Im-Jae;Seung, Seo-Jae
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 추계학술발표회 초록집
    • /
    • pp.135-140
    • /
    • 1994
  • An improved steam generator model has been developed for the DSNP simulation of normal operational transient behavior of CANDU nuclear power plant. For more realistic prediction of steam generator behavior during transient, tube bundle region is divided into two separate control volumes, subcooled region and saturated region, and the variation of thermal hydraulic properties in the control volume is accounted for more realistic estimates of outlet enthalpy of each control volume. Test results for typical CANDU operational transient case show reasonable transient behavior of steam generator with overall CANDU operation and improved operational characteristics of steam generator with power variation.

  • PDF

RELAP5/MOD1/NSC를 이용한 원자력 1호기 주급수 상실 사고 해석 (Analysis of Loss of Normal Feedwater Transient Using RBLAP5/MOD1/NSC; KNU1 Plant Simulation)

  • Hho Jung Kim;Bub Dong Chung;Young Jin Lee;Jin Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.9-16
    • /
    • 1986
  • 1984년 11월 14일 원자력 1호기에서 발생된 주급수 상실사고에 대한 계통의 열수력학적인 거동을 모의·해석하고, 발전소 실측자료와의 비교를 통하여 사용된 전산코드의 신뢰도를 평가하였다. 모의된 열수력학적 변수들은 발전소 실측자료와 비교적 잘 일치하였으나 원자로 트립시에 증기발생기 증기유량과 주 냉각재 계통 평균온도에 있어서 약간의 차이를 보였다. 이는 원자로 트립시 깎은 시간에 급격한 노심 출력의 감소로 인하여 열·수력학적 변수들에 큰 변화를 야기하여 발전소 실측자료가 과도상태에서의 불학실성을 내포하기 때문으로 예측되었다. 해석에 사용된 전산코드는 RELAP5/MOD1/CY018로부터 불합리한 oscillation을 일으키는 interphase drag 및 wall heat transfer model의 수정을 통하여 개발된 RELAP5/MOD1/NSC이다.

  • PDF

Thermal Analysis of Wall/Floor Intersections in Building Envelope

  • Ihm, Pyeongchan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권2호
    • /
    • pp.97-107
    • /
    • 2004
  • Wall/floor intersection is important parts of a building envelope system. These intersections can be sources of thermal bridging effects and/or moisture condensation problems. This paper provides a detailed analysis of the thermal performance of wall/floor intersection. In particular, two-dimensional steady-state and transient solutions of the heat conduction within the wall/floor joint are presented. Various insulation configurations are considered to determine the magnitude of heat transfer increase due to wall/floor joint construction.

수치계산에 의한 열전사 프린팅헤드의 열해석 (Thermal Analysis of Thermal Printing Head by Numerical Method)

  • 조창주;정우남
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.50-55
    • /
    • 1998
  • A thermal printing head is used for heat transcription printing of facsimile or printer. The thermal printing head has multilayered thin films and heaters lined up. Thermal analysis of thermal printing head is important for a design of thermal printing head. Since the heating charateristics of thermal printing head is dependent on the thermal conductivities of multilayerd material, this study made numerical analysis for three dimensional transient heat conduction in mutilayered films by the finite difference method and investigated the effect of various thermal conductivities of thin films. The results of this study will be used to design thermal printing head and select the materials for thermal printing head.

  • PDF