• 제목/요약/키워드: Thermal Strain Properties

Search Result 339, Processing Time 0.021 seconds

Physical Properties of Elastic Epoxies for High Voltage

  • Lee, Kwan-Woo;Park, Yong-Sung;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.51-54
    • /
    • 2004
  • In this paper, the thermal and mechanical properties of elastic epoxy for the application of high voltage products were investigated. Glass transition temperature (Tg) of elastic epoxies cannot be found from room temperature to 20$0^{\circ}C$ by DSC (Differential Scanning Calorimetry). Weight reduction occurred at 285$^{\circ}C$ and 451$^{\circ}C$ according to a thermogravimeter. The first temperature was affected by addictives and the second by epoxies characteristic. Maximum tensile strain showed 28.3kgf/$\textrm{cm}^2$/$\textrm{cm}^2$ at 20% of mechanical stress in addictives 35 (phr). The SEM (Scanning electron microscope) micrograph of the fracture surface observed void and tearing of elastic epoxy at addictives 35 (phr). On the other side, the SEM micrograph of the rigid epoxy showed a broken trace.

Effect of ion implanted sapphire substrates for GaN (GaN 성장을 위한 이온 주입된 사파이어 기판의 효과)

  • 이재석;진정근;강민구;노대호;성윤모;변동진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.170-170
    • /
    • 2003
  • We have implanted on sapphire substrate with various ions and investigated the properties of GaN epilayers grown on implanted sapphire substrate by metal organic chemical vapor deposition (MOCVD). Sapphire is typical substrate for GaN epilayers. However, there are many problems such as lattice mismatch and thermal coefficient difference between sapphire substrate and GaN. The ion implanted substrate's surface had decreased internal tree energies during the growth of the GaN epilayer, md the misfit strain was relieved through the formation of an AlN phase on the ions implanted sapphire(0001) substrates. [1] The crystal and optical properties of GaN epilayer grown in ions implanted sapphire(0001) substrate were improved.

  • PDF

Characterization of a Novel Lipopolysaccharide Biosurfactant from Klebsiella oxitoca

  • Kim, Pil;Kim, Jung-Hoe
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.494-499
    • /
    • 2005
  • The chemical, physical, and emulsifying properties of BSF-1, which is an extracellular lipopolysaccharide biosurfactant produced by Klebsiella oxytoca strain BSF-1, were studied. BSF-1 was found to be composed mainly of carbohydrate and fatty acids. The average molecular weight was $1,700{\sim}2,000 kDa$. The polysaccharide fraction contained L-rhamnose, D-galactose, D-glucose, and D-glucuronic acid at a molar ratio of 3:1: 1:1. The fatty acid content was 1.1 % (w/w) and consisted mainly of palmitic acid (C16:0), 3-hydroxylauric acid (3-OH-C12:0), and lauric acid (C12:0). In terms of thermal properties, BSF-1 was revealed to have inter- and intra-molecular hydrogen bonds. The hydrodynamic volume (intrinsic viscosity) of BSF-1 was 22.8dL/g. BSF-1 could be maintained as a stable emulsion for 48 h through a low-level reduction in surface tension. The optimal emulsification temperature was $30^{\circ}C$. Emulsification by BSF-1 was efficient at both acidic and neutral pH values.

Annealing Effect on Structural, Electrical and Optical Properties of CdS Films Prepared by CBD Method

  • Haider, Adawiya J.;Mousa, Ali M.;Al-Jawad, Selma M.H.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.326-332
    • /
    • 2008
  • In this work CdS films were prepared by using chemical bath deposition, which is simple and inexpensive technique suitable for large deposition area. Annealing in air at different temperatures (300, 350, 400, 450 and $500^{\circ}C$) at constant time of 30 min, also for different times (15, 30, 45, 60 and 90 min) at constant temperature ($300^{\circ}C$) is achieved. X-Ray analysis has confirmed the formation of cadmium oxide (CdO) with slight increase in grain size, shift towards lower scattering angle due to relaxation in the tensile strain for deposition films, and structure change from cubic and hexagonal to the hexagonal. From electrical properties, significant increase in electrical conductivity appeared in samples annealed at $300^{\circ}C$ for 60 min, and at $350^{\circ}C$ for 30 min.

Prediction of residual mechanical behavior of heat-exposed LWAC short column: a NLFE model

  • Obaidat, Yasmeen T.;Haddad, Rami H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.265-280
    • /
    • 2016
  • A NLFE model was proposed to investigate the mechanical behavior of short columns, cast using plain or fibrous lightweight aggregate concrete (LWAC), and subjected to elevated temperatures of up to $700^{\circ}C$. The model was validated, before its predictions were extended to study the effect of other variables, not studied experimentally. The three-dimensional NLFE model was developed using ANSYS software and involved rational simulation of thermal mechanical behavior of plain and fibrous LWAC as well as longitudinal and lateral steel reinforcement. The prediction from the NLFE model of columns' mechanical behavior, as represented by the stress-strain diagram and its characteristics, compared well with the experimental results. The predictions of the proposed models, considering wide range of lateral reinforcement ratios, confirmed the behaviors observed experimentally and stipulated the importance of steel confinement in preserving post-heating mechanical properties of plain and fibrous LWAC columns, being subjected to high temperature.

Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates

  • Kaci, Abdelhakim;Tounsi, Abdelouahed;Bakhti, Karima;Adda Bedia, El Abbas
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.491-504
    • /
    • 2012
  • In this paper, the nonlinear cylindrical bending of simply supported, functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs), is studied. The plates are subjected to uniform pressure loading in thermal environments and their geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are reduced to linear differential equation with nonlinear boundary conditions yielding a simple solution procedure. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.

Techniques for Measuring Mechanical Properties of Polysilicon using an ISDG (ISDG를 이용한 다결정실리콘 기계적 물성값 측정법)

  • 오충석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.171-178
    • /
    • 2004
  • Techniques and procedures are presented for measuring mechanical properties on thin-film Polysilicon. Narrow platinum lines are deposited 250 ${\mu}{\textrm}{m}$ apart on tensile specimens that are 3.5 ${\mu}{\textrm}{m}$ thick and 600 ${\mu}{\textrm}{m}$ wide. Load is applied by a piezo-actuator and by hanging weights. Strain is measured by an ISDC at temperatures up to 500 $^{\circ}C$. Measurements of the elastic modulus with jig modifications, loading speed and temperature change are presented first. And then, the preliminary data for the coefficient of thermal expansion and creep behavior are presented as a reference.

Preparation and properties of Bi-based lead-free ceramic multilayer actuators

  • Nguyen, Van-Quyet;Han, Hyoung-Su;Lee, Han-Bok;Yoon, Jong Il;Ahn, Kyoung Kwan;Lee, Jae-Shin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.282-285
    • /
    • 2012
  • Lead-free (Bi0.5Na0.41K0.09)TiO3 (BNKT) multilayer ceramic actuators were prepared using tape-casting and screen-printing techniques. Co-firing behavior of BNKT/AgPd laminates was examined as a function of sintering temperature. It was found that co-firing induced bending and electrical properties were very sensitive to sintering condition. By optimizing sintering conditions, lead-free electrostrictive multilayer actuators with normalized strain Smax/Emax of 266 pm/V have been successfully fabricated, which is promising for lead-free actuator applications.

The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles (열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응)

  • Oh, Chulmin;Park, Nochang;Han, Changwoon;Bang, Mansoo;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

Thermal post-buckling measurement of the advanced nanocomposites reinforced concrete systems via both mathematical modeling and machine learning algorithm

  • Minggui Zhou;Gongxing Yan;Danping Hu;Haitham A. Mahmoud
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.623-638
    • /
    • 2024
  • This study investigates the thermal post-buckling behavior of concrete eccentric annular sector plates reinforced with graphene oxide powders (GOPs). Employing the minimum total potential energy principle, the plates' stability and response under thermal loads are analyzed. The Haber-Schaim foundation model is utilized to account for the support conditions, while the transform differential quadrature method (TDQM) is applied to solve the governing differential equations efficiently. The integration of GOPs significantly enhances the mechanical properties and stability of the plates, making them suitable for advanced engineering applications. Numerical results demonstrate the critical thermal loads and post-buckling paths, providing valuable insights into the design and optimization of such reinforced structures. This study presents a machine learning algorithm designed to predict complex engineering phenomena using datasets derived from presented mathematical modeling. By leveraging advanced data analytics and machine learning techniques, the algorithm effectively captures and learns intricate patterns from the mathematical models, providing accurate and efficient predictions. The methodology involves generating comprehensive datasets from mathematical simulations, which are then used to train the machine learning model. The trained model is capable of predicting various engineering outcomes, such as stress, strain, and thermal responses, with high precision. This approach significantly reduces the computational time and resources required for traditional simulations, enabling rapid and reliable analysis. This comprehensive approach offers a robust framework for predicting the thermal post-buckling behavior of reinforced concrete plates, contributing to the development of resilient and efficient structural components in civil engineering.