• 제목/요약/키워드: Thermal Strain Properties

검색결과 339건 처리시간 0.028초

하중조건에 따른 경량골재 콘크리트의 열팽창변형 특성 (Properties of Thermal Expansion Strain of Light Weight Aggregate Concrete with Loading Conditions)

  • 윤민호;김규용;이태규;남정수;신경수;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.255-256
    • /
    • 2012
  • In this study, strain properties of high strength concrete using light weight aggregate which is widely used in recent years are evaluated. For these purpose, thermal strain, transient creep were measured in prestressed condition as 0, 20, 40% of specimen strength at target temperature with 60MPa specimens which was using normal and light weight aggregate. As a result, light weight aggregate is more advantageous for the control of strain than normal aggregate because of its low thermal expansion.

  • PDF

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

하중재하조건을 고려한 초고강도 콘크리트의 열변형거동특성 평가 (Evaluation on Thermal Strain Behavior Properties of Ultra High Strength Concrete considering Load)

  • 이영욱;김규용;최경철;김홍섭;이보경;윤민호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.162-163
    • /
    • 2015
  • Thermal deformation behavior of high-strength concrete (HSC) exposed to fire is different from that of normal strength concrete (NSC). In case of ultra-high-strength concrete (UHSC), it is well known that thermal deformation behavior is greater than HSC. With increasing research of UHSC in buildings, it is necessary to understand the performance of UHSC at elevated temperatures considering loading condition. Therefore, evaluation on properties of thermal strain behavior properties of ultra high strength concrete by loading and high temperature was conducted.

  • PDF

하중재하조건을 고려한 초고강도 콘크리트의 열변형거동특성 평가 (Evaluation on Thermal Strain Behavior Properties of Ultra High Strength Concrete considering Load)

  • 이영욱;김규용;최경철;김홍섭;이보경;윤민호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.80-81
    • /
    • 2015
  • Thermal deformation behavior of high-strength concrete (HSC) exposed to fire is different from that of normal strength concrete (NSC). In case of ultra-high-strength concrete (UHSC), it is well known that thermal deformation behavior is greater than HSC. With increasing research of UHSC in buildings, it is necessary to understand the performance of UHSC at elevated temperatures considering loading condition. Therefore, evaluation on properties of thermal strain behavior properties of ultra high strength concrete by loading and high temperature was conducted.

  • PDF

API X70 라인파이프강의 인장 특성에 미치는 변형 시효의 영향 (Effect of Strain Aging on the Tensile Properties of an API X70 Linepipe Steel)

  • 이승완;이상인;황병철
    • 한국재료학회지
    • /
    • 제27권10호
    • /
    • pp.524-529
    • /
    • 2017
  • The effect of strain aging on the tensile properties of API X70 linepipe steel was investigated in this study. The API X70 linepipe steel was fabricated by controlled rolling and accelerated cooling processes, and the microstructure was analyzed using optical and scanning electron microscopes and electron backscatter diffraction. Strain aging tests consisting of 1 % pre-strain and thermal aging at $200^{\circ}C$ and $250^{\circ}C$ were conducted to simulate U-forming, O-forming, Expansion(UOE) pipe forming and anti-corrosion coating processes. The API X70 linepipe steel was composed of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite whose volume fraction was dependent on the chemical composition and process conditions. As the thermal aging temperature increased, the steel specimens showed more clearly discontinuous type yielding behavior in the tensile stress-strain curve due to the formation of a Cottrell atmosphere. After pre-strain and thermal aging, the yield and tensile strengths increased and the yield-to-tensile strength ratio decreased because yielding and aging behaviors significantly affected work hardening. On the other hand, uniform and total elongations decreased after pre-strain and thermal aging since dislocation gliding was restricted by increased dislocation density after a 1 % pre-strain.

열전달계수에 대한 새로운 고찰 및 고-중압 터빈 케이싱 모형의 열응력 해석 (A new consideration for the heat transfer coefficient and an analysis of the thermal stress of the high-interim pressure turbine casing model)

  • 엄달선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.425-429
    • /
    • 2004
  • In real design of the high & interim pressure turbine casing, it is one of the important things to figure out its thermal strain exactly. In this paper, with the establishment of the new concept for the heat transfer coefficient of steam that is one of the factors in analysis of the thermal stress for turbine casing, an analysis was done for one of the high & interim pressure turbine casings in operating domestically. The sensitivity analysis of the heat transfer coefficient of steam to the thermal strain of the turbine casing was done with a 2-D simple model. The analysis was also done with switching of the material properties of the turbine casing and resulted in that the thermal strain of the turbine casing was not so sensitive to the heat transfer coefficient of steam. On the basis of this, 3-D analysis of the thermal strain for the high and interim pressure turbine casing was done.

  • PDF

극저온 환경에서의 섬유강화 복합재료의 열팽창 계수 측정을 위한스트레인 게이지의 보정에 관한 연구 (Calibration of Strain Gauge for Thermal Expansion Coefficientof Fiber Reinforced Composites at Cryogenic Temperature)

  • 이원오;이상복;이진우;엄문광
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.1-6
    • /
    • 2010
  • Since the fiber reinforced polymeric (FRP) composites are considered in next generation of space transportation systems, reliable thermal expansion properties should be well provided for structural design of composite materials. To obtain accurate mechanical behaviors at a cryogenic temperature, precise strain measurement and calibration must be provided. In this work, apparent strains (or thermal output) of temperature self-compensated strain gages were deliberately investigated for epoxy, CTBN modified epoxy and carbon fabric composite system from room temperature to liquid nitrogen temperature. Also, fourth-order thermal output curves were presented for the further calibration. The results showed that the thermal output is heavily dependent on test materials and a large amount of apparent strains were observed for the polymer resins.

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

수렴성빔 전자회절법을 이용한 $SiO_2/Si$ 계면 부위의 격자 변형량 측정 (Measurements of Lattice Strain in $SiO_2/Si$ Interface Using Convergent Beam Electron Diffraction)

  • 김긍호;우현정;최두진
    • Applied Microscopy
    • /
    • 제25권2호
    • /
    • pp.73-79
    • /
    • 1995
  • The oxidation of silicon wafers is an essential step in the fabrication of semiconductor devices. It is known to induce degradation of electrical properties and lattice strain of Si substrate from thermal oxidation process due to charged interface and thermal expansion mismatch from thermally grown SiO, film. In this study, convergent beam electron diffraction technique is employed to directly measure the lattice strains in Si(100) and $4^{\circ}$ - off Si(100) substrates with thermally grown oxide layer at $1200^{\circ}C$ for three hours. The ratios of {773}-{973}/{773}-{953} Higher Order Laue Zone lines were used at [012] zone axis orientation. Lattice parameters of the Si substrate as a function of distance from the interface were determined from the computer simulation of diffraction patterns. Correction value for the accelerating voltage was 0.2kV for the kinematic simulation of the [012]. HOLZ patterns. The change in the lattice strain profile before and after removal of oxide films revealed the magnitudes of intrinsic strain and thermal strain components. It was shown that $4^{\circ}$ -off Si(100) had much lower intrinsic strain as surface steps provide effective sinks for the free Si atoms produced during thermal oxidation. Thermal strain in the Si substrate was in compression very close to the interface and high concentration of Si interstitials appeared to modify the thermal expansion coefficient of Si.

  • PDF

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.