• Title/Summary/Keyword: Thermal Spray

Search Result 528, Processing Time 0.021 seconds

Effects of Vacuum Cooling Followed by Water Spraying on the Quality of Precooked Skipjack Katsuwonus pelamis (진공분무 냉각에 의한 자숙 가다랑어(Katsuwonus pelamis)의 냉각 및 품질 특성에 관한 연구)

  • Lee, Tae-Hun;Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.12-17
    • /
    • 2014
  • The cooling of precooked skipjack Katsuwonus pelamis is a critical thermal process in tuna canning because it affects the quality and yield of the canned tuna, as well as productivity. The combined method of vacuum cooling followed by water spraying (VC-WS) was investigated to increase cooling rates, and prevent loss of yield of the precooked tuna during vacuum cooling. For VC-WS, the precooked skipjack was cooled to $30^{\circ}C$ by vacuum at 31 mmHg and then wetted by spraying water for 2 min. The effects of VC-WS on cooling times, cooling loss, color, texture and lipid oxidation of the precooked tuna were compared with conventional spray cooling (SC).The cooling times for precooked skipjack from $75^{\circ}C-30^{\circ}C$ were 11 min for VC-WS and 145 min for SC. The cooling losses were 1.7 % for VC-WS and 1.6 % for SC. Peroxide and thiobarbituric acid (TBA) values of VC-WS were lower than those of SC. The loin of the VC-WS-treated skipjack was brighter and harder than the SC loin, as indicated by higher lightness and hardness values. Based on these results, we believe that the VC-WS process could compensate for the cooling loss of vacuum cooling and minimize changes in quality that occur during cooling of precooked skipjack tuna.

Syntheses of Novel Sol-Gel Precursor Containing Anti-corrosive Functional Group and Their Uses in Organic-Inorganic Hybrid Coatings (내부식성이 우수한 졸-젤 전구체의 합성 및 이를 함유하는 유무기 하이브리드 코팅재)

  • Han, Mi-Jeong;Mang, Ji-Young;Seo, Ji-Yeon
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.405-409
    • /
    • 2010
  • New sol-gel precursors having the ability to protect iron against corrosion were synthesized and used to prepare organic-inorganic hybrid coatings based on epoxy. Bisphenol A epoxy was modified with 3-isocyanatopropyltriethoxysilane to improve the compatibility, and water and HCl were used as catalysts for sol-gel process. Various coating formulations were prepared depending on the type of sol-gel precursors and the amount of each ingredient, and cast on iron substrates by dip-coating and thermally cured. Corrosion protection properties of coated iron were studied by a salt spray test and electrochemical impedance spectroscopy under 0.1 M NaCl electrolyte. Hybrid coatings containing anticorrosive functional group exhibited excellent corrosion protection on iron, compared to that of typical hybrid coatings. From electrochemical impedance spectroscopy, the hybrid coatings containing anticorrosive functional group could maintaine the initial impedance after 500 h, while the impedance of hybrid coatings without them started to decrease after 24 h.

Dynamic Characteristics Analysis of the Cryogenic Nitrogen Injection of Swirl Injector using POD and DMD (POD와 DMD를 이용한 와류형 분사기의 극저온 질소 분무 동적 특성 분석)

  • Kang, Jeongseok;Sung, Hong-Gye;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-9
    • /
    • 2017
  • The cryogenic nitrogen spray of a swirl injector has been numerically investigated using three dimensional LES turbulence model to analyze the dynamic characteristics under supercritical condition. To predict the precise nitrogen properties under supercritical condition, SRK equation of state, Chung's method for viscosity and thermal conductivity and Takahashi's correlation based on Fuller's theory for diffusion coefficient are implemented. The complex flow structures due to interaction between flow field and acoustic field are observed inside and outside the injector under supercritical condition. FFT, POD, and DMD techniques are employed to understand the coherent structures. By implementing the FFT, the dominant frequencies are identified inside and outside the injector. The coherent flow structures related to the dominant frequencies are visualized using the POD and DMD techniques. In addition, the DMD provides the damping coefficient which is related with the instability prediction.

Automatic Layer-by-layer Dipping System for Functional Thin Film Coatings (다층박막적층법 적용 기능성 박막 코팅을 위한 자동화 시스템)

  • Jang, Wonjun;Kim, Young Seok;Park, Yong Tae
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.314-318
    • /
    • 2019
  • A simple and very flexible automatic dipping machine was constructed for producing functional multilayer films on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits several features that allow a fully automated coating operation, such as various depositing recipes, control of the dipping depth and time, operating speed, and rinsing flow, air-assist drying nozzles, and an operation display. The machine uniformly dips a substrate into aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species. Between the dipping of each species, the sample is spray cleaned with deionized water and blow-dried with air. The dipping, rinsing, and drying areas and times are adjustable by a computer program. Graphene-based thin films up to ten-bilayers were prepared and characterized. This film exhibits the highly filled multilayer structures and low thermal resistance, indicating that the robotic dipping system is simple to produce functional thin film coatings with a variety of different layers.

THE COMPARATIVE STUDY OF THERMAL INDUCTIVE EFFECT BETWEEN INTERNAL CONNECTION AND EXTERNAL CONNECTION IMPLANT IN ABUTMENT PREPARATION (구강내에서 임플랜트 지대주 형성 시 내부연결방식과 외부연결방식간의 열전달 효과 비교)

  • Huh, Jung-Bo;Ko, Sok-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.60-70
    • /
    • 2007
  • Statement of problem: The cement-type abutment would be needed for the reduction of its body in order to correct the axis and to assure occlusal clearance. In the case of intraoral preparation, there is a potential risk that generated heat could be transmitted into the bone-implant interface, where it can cause deterioration of tissues around the implant and failed osseointegration. Purpose: The purpose of this study was to assess the difference of the heat transmitting effect on external and internal connection implant types under various conditions. Material and method: For evaluating the effects of alternating temperature, the thermocoupling wires were attached on 3 areas of the implant fixture surface corresponding to the cervical, middle, and apex. The abutments were removed 1mm in depth horizontally with diamond burs and were polished for 30 seconds at low speed with silicone points using pressure as applied in routine clinical practice. Obtained data were analyzed using Mann-Whitney rank-sum test and Wilcoxon / Kruskal-Wallis Tests. Result: Increased temperature on bone-implant interface was evident without air-water spray coolant both at high speed reduction and low speed polishing (p<.05). But, the difference between connection types was not shown. Conclusion: The reduction procedure of abutment without using proper coolant leads to serious damage of oral tissues around the implant irrespective of external and internal connection type.

Evaporation Characteristics of Aluminum by Using Surface-treated Graphite Boat (표면처리된 흑연 보트를 이용한 알루미늄의 증발 특성)

  • Jeong, J.I.;Yang, J.H.
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Resistive heating sources are widely used to prepare thin films by vapor deposition because they are cheap, and easy to install and handle in vacuum system. Graphite is one of materials used to make the resistive heating source, but until now only limited applications have been possible as it reacts easily with evaporating materials at high temperature. In this study, evaporation characteristics of aluminum have been investigated by using graphite boat thermally treated with BN powder. The employed graphite boat has been prepared by spray-coating BN power onto the cavity surface of the boat and thermal treatment with aluminum in vacuum at the temperature of more than $1400^{\circ}C$. The voltage-current characteristics as well as resistivity changes of the graphite boat have been investigated during aluminum evaporation according to the applied voltage and time. The evaporation aspect has been picturized during flash evaporation for 40 seconds based on the characterization results. The evaporation rate of the graphite boat has been compared with that of BN boat. The graphite boat showed some different characteristics compared with BN boat, in that the evaporation occurred at the last stage of flash evaporation. The film appearance according to the applied voltage has been compared, and also the reflectance of the resulting film has been investigated according to the film thickness. It has been found that the graphite boat thermally treated with BN powder can be used for aluminum evaporation without problem.

Evaluation on the Thermal Resistance Capacity of Fire Proof Materials for Improving Fire Resistance of Near-Surface-Mounted FRP in Concrete (콘크리트내에 표면매입 보강된 FRP의 내화성능 향상을 위한 내화단열재 열저항성능 평가)

  • Yeon, Jea-Young;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.51-58
    • /
    • 2014
  • This paper presents a fire exposure test result to evaluate fire resistance capacity of retrofit method using FRP (Fiber Reinforced Polymer) in reinforcement concrete structure. Especially, this paper focused on near-surface-mounted retrofit method; FRP is mounted into the groove after making a groove in concrete. In the test, main parameters are retrofit method and materials for fire proofing. Spray type of perlite and board type of calcium silicate were considered as external fire proof on surface while particle of calcium silicate and polymer mortar as internal one in groove. By increasing the temperature of inside heating furnace, the transfer of temperature from surface of fire proofing material to groove in specimen was measured. As a result, fire proofing using the board of calcium silicate was more effective to delay the heat transfer from outside than spraying with perlite. It was found that the fire proofing could resist outside temperature of $820^{\circ}C$ at maximum to keep the temperature of epoxy below glass transit temperature (GTT).

Control of Algal Blooms in Eutrophic Water Using Porous Dolomite Granules

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Shin Haeng;Cheong, Sun Hee;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.108-113
    • /
    • 2017
  • The use of aluminum-based coagulants in water pretreatment is being carefully considered because aluminum exposure is a risk factor for the onset of Alzheimer's disease. Lightly burned-dolomite kiln dust (LB-DKD) was evaluated as an alternative coagulant because it contains high levels of the healthful minerals calcium and magnesium. An organic pore forming agent (OPFA) was incorporated to prepare porous granules after OPFA removal through a thermal decomposition process. A spray drying method was used to produce uniform and reproducible spherical granules with low density, since fine dolomite particles have irregular agglomeration behavior in the hydration reaction. The use of fine dolomite powder and different porosity granules led to a visible color change in raw algae (RA) containing water, from dark green to transparent colorlessness. Also, dolomite powders and granules exhibited a mean removal efficiency of 48.3% in total nitrogen (T-N), a gradual increase in the removal efficiency of total phosphorus (T-P) as granule porosity increased. We demonstrate that porous dolomite granules can improve the settling time and water quality in summer seasons for the emergent treatment of excessive algal blooms in eutrophic water.

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF

Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control (EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교)

  • Lee, Yong-Gyu;Jang, Jae-Hoon;Lee, Sun-Youp;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.