• Title/Summary/Keyword: Thermal Sensitivity

Search Result 636, Processing Time 0.025 seconds

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure (II) (선체 용접부의 균열진전 및 피로수명예측에 관한 연구(II))

  • Kim, Kyung-Su;Shim, Chun-Sik;Kwon, Young-Bin;Ko, Hee-Seung;Ki, Hyeok-Geun;Viswanathan, K.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.679-687
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of crack initiation and propagation stages. For a welding member in ship structure, the fatigue crack propagation life is more important than the fatigue crack initiation life. To calculate precisely the fatigue crack propagation life at the critical welding location, the knowledge of the residual stress sensitivity on the fatigue strength is necessary. In this study, thermo elastic-plastic analysis was conducted in order to examine the effect of residual stress on the fatigue crack propagation life. Also the fatigue crack propagation lives considering residual stress were calculated using fatigue crack growth code, AFGROW, on the basis of fracture mechanics. AFGROW is widely used for fatigue crack growth predictions under constant and variable amplitude loading. The reliability of AFGROW on the fatigue of ship structure was confirmed by the comparison of the estimated results with the fatigue propagation test results.

A qualitative evaluation method for engine and its operating-envelope using GSP (Gas turbine Simulation Program)

  • Kyung, Kyu-Hyung;Jun, Yong-Min;Yang, Soo-Seok;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.848-853
    • /
    • 2004
  • Regarding to the project SUAV (Smart Unmanned Aerial Vehicle) in KARI (Korea Aerospace Research Institute), several engine configurations has been evaluated. However it's not an easy task to collect all the necessary data of each engine for the analysis. Usually, some kind of modeling technique is required in order to determine the unknown data. In the present paper a qualitative method for reverse engineering is proposed, in order to identify some design patterns and relationships between parameters. The method can be used to estimate several parameters that usually are not provided by the manufacturer. The method consists of modeling an existing engine and through a simulation, compare its transient behavior with its operating envelope. In the simulation several parameters such as thermodynamics, performance, safety and mechanics concerning to the definition of operation-envelope, have been discussed qualitatively. With the model, all engine parameters can be estimated with acceptable accuracy, making possible the study of dependencies among different parameters such as power-turbine total inertia, TIT, take-off time and part load, in order to check if the engine transient performance is within the design criteria. For more realistic approach and more detailed design requirements, it will be necessary to enhance the compressor map first, and more realistic estimated values must be taken into account for intake-loss, bleed-air and auxiliary power extraction. The relative importance of these “unknown” parameters must be evaluated using sensitivity analysis in the future evaluation. Moreover, fluid dynamics, thermal analysis and stress analysis necessary for the resulting life assessment of en engine, will not be addressed here but in a future paper. With the methodology presented in the paper was possible to infer the relationships between operation-envelope and engine parameters.

  • PDF

The Characteristics Analysis and Manufacture of Explosive BKNO3 on PMD (PMD용 화약 BKNO3 제조 및 특성분석)

  • Shim, Jungseob;Kim, Sangbaek;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.433-439
    • /
    • 2017
  • This research investigates the manufacturing process and characteristics analysis of $BKNO_3$ (Boron Potassium Nitrate) as pyrotechnic are commonly found in the aerospace, defense, and automotive industries. A solid pyrotechnic mixture is composed of an oxidizing agent, fuel, and binder. Precipitation process was used to uniformly mix the raw material. Through the analysis of the material characteristics and thermal response is designed optimum ratio by NASA CEA program. It was compared by performing the evaluation of these size/shape/sensitivity/calorimetry characteristics.

  • PDF

Examination of Factors Influencing Urban Higher Temperature using E-GIS DB (E-GIS DB를 활용한 도시 고온화 영향인자 검토)

  • Kim, Keum-Ji;Yoko, Kamata;Lee, Jung-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.44-49
    • /
    • 2009
  • In this study, we performed urrban climate simulation how both the factor of environmental land and artificial factors influence on the formation of urban temperature. With deducing quantitative data, this study could get more accurate results of the urban temperature using urban climate simulation system. In the case of natural land cover, it appeared that there are effects on the lowering temperature and the lower temperature rate appeared in the water land cover on the whole. This is considered as temperature in water land was low because of the characteristics of water land having evaporation latent heat was high and convective sensible heat was low. In case of building which has building coverage ratio, 5% with 10 floors and building coverage ratio, 15 % with 6 floors, it appears that the temperature in the water land is $33.6^{\circ}C$. In case of building coverage ratio 5%, temperature dropped when buildings has more than 4 stories. This is regarded as the size of building is bigger, the temperature dropped in relatively because of the fluctuation of the rate of solar heat from the land. At the present time, the urban temperature are higher because of various artificial factors in the city. With these results, this study supposed to be a basies of the future studies for considering both the composition of building coverate ratio and floor plan.

  • PDF

Effect of Grain Size on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-N-C Alloys (오스테나이트계 Fe-18Cr-10Mn-N-C 합금의 연성-취성 천이 거동에 미치는 결정립 크기의 영향)

  • Lee, Sang-In;Lee, Seung-Yong;Nam, Seung Hoon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.559-565
    • /
    • 2015
  • The ductile-brittle transition behavior of two austenitic Fe-18Cr-10Mn-N-C alloys with different grain sizes was investigated in this study. The alloys exhibited a ductile-brittle transition behavior because of an unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy specimens with a smaller grain size had a higher yield and tensile strengths than those with a larger grain size due to grain refinement strengthening. However, a decrease in the grain size deteriorated the low-temperature toughness by increasing the ductile-brittle transition temperature because nitrogen or carbon could enhance the effectiveness of the grain boundaries to overcome the thermal energy. It could be explained by the temperature dependence of the yield stress based on low-temperature tensile tests. In order to improve both the strength and toughness of austenitic Fe-Cr-Mn-N-C alloys with different chemical compositions and grain sizes, more systematic studies are required to understand the effect of the grain size on the mechanical properties in relation to the temperature sensitivity of yield and fracture stresses.

Thermo-mechanical Behavior of Wire Bonding PBGA Packages with Different Solder Ball Grid Patterns (Wire Bonding PBGA 패키지의 솔더볼 그리드 패턴에 따른 열-기계적 거동)

  • Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.11-19
    • /
    • 2009
  • Thermo-mechanical behaviors of wire-bond plastic ball grid array (WB-PBGA) package assemblies are characterized by high-sensitivity moire interferometry. Using the real-time moire setup, fringe patterns are recorded and analyzed for several temperatures. Experiments are conducted for three types of WB-PBGA package that have full grid pattern and perimeter pattern with/without central connections. Bending deformations of the assemblies and average strains of the solder balls are investigated, with an emphasis on the effect of solder interconnection grid patterns, Thermal strain distributions and the location of the critical solder ball in package assemblies are quite different with the form of solder ball grid pattern. For the WB-PBGA-PC, The largest of effective strain occurred in the inner solder ball of perimeter closest to the chip solder balls. The critical solder ball is located at the edge of the chip for the WB-PBGA-FG, at the most outer solder ball of central connections for the WB-PBGA-P/C, and at the inner solder ball closest to the chip for the WB-PBGA-P.

  • PDF

A fiber optic surface plasmon resonance (SPR) sensorusing cyclic olefin copolymer (COC) polymer prism (Cyclic olefin copolymer (COC) 폴리머 프리즘을 사용한 광섬유 기반 표면 플라즈몬 공명 (SPR) 바이오 센서)

  • Yun, Sung-Sik;Lee, Soo-Hyun;Ahn, Chong-H.;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.369-374
    • /
    • 2008
  • A novel fiber optic surface plasmon resonance (SPR) sensor using cyclic olefin copolymer (COC) prism with the spectral modulation is presented. The SPR sensor chip is fabricated using the SU-8 photolithography, Ni-electroplating and COC injection molding process. The sidewall of the COC prism is partially deposited with Au/Cr (45/2.nm thickness) by e-beam evaporator, and the thermal bonding process is conducted for micro fluidic channels and optical fibers alignment. The SPR spectrum for a phosphate buffered saline (0.1.M PBS, pH.7.2) solution shows a distinctive dip at 1300.nm wavelength, which shifts toward longer wavelength with respect to the bovine serum albumin (BSA)concentrations. The sensitivity of the wavelength shift is $1.16\;nm{\cdot}{\mu}g^{-1}{\cdot}{\mu}l^{-1}$. From the wavelength of SPR dips, the refractive indices (RI) of the BSA solutions can be theoretically calculated using Kretchmann configuration, and the change rate of the RI was found to be $2.3{\times}10^{-5}RI{\cdot}{\mu}g^{-1}{\cdot}l^{-1}$. The realized fiber optic SPR sensor with a COC prism has clearly shown the feasibility of a new disposable, low cost and miniaturized SPR biosensor for biochemical molecular analyses.

Economical Sweating Function in Africans: Quantitative Sudomotor Axon Reflex Test

  • Lee, Jeong-Beom;Bae, Jun-Sang;Choi, Jeong-Hwan;Ham, Joo-Hyun;Min, Young-Ki;Yang, Hun-Mo;Kazuhiro, Shimizu;Matsumoto, Takaaki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2004
  • People in tropics have the ability to tolerate heat by residential permanence in the tropics. Previously, we have shown that African and Thai subjects who lived for whole their lives in only their respective countries sweat less under hot conditions than South Koreans who also lived whole their lives in Korea. The difference in sweating responses was attributed to the dissimilar central and peripheral sweating mechanisms operating in people from both groups. In the present study, acetylcholine (ACh), the primary transmitter for the sudomotor functions, was iontophoretically administered to South Koreans and Africans to determine the characteristic sudorific responses of their acclimatized biologic make-up to their respective environments. Using quantitative sudomotor axon reflex test (QSART), direct (DIR) and axon reflex (AXR) responses were evaluated. The findings revealed that the sweat onset-time among South Koreans was 0.91 min earlier than among Africans (P<0.01). The axon reflex sweat volume of nicotine receptor activity AXR(1) and sweat volume of muscarinic receptor activity DIR(2) among South Koreans were 79% and 53% greater (P<0.01), respectively. These results indicate that the reduced thermal sweating among Africans is at least in part attributed to the diminished sensitivity of sweat glands to ACh.

The success rate of bupivacaine and lidocaine as anesthetic agents in inferior alveolar nerve block in teeth with irreversible pulpitis without spontaneous pain

  • Parirokh, Masoud;Yosefi, Mohammad Hosein;Nakhaee, Nouzar;Abbott, Paul V.;Manochehrifar, Hamed
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.155-160
    • /
    • 2015
  • Objectives: Achieving adequate anesthesia with inferior alveolar nerve blocks (IANB) is of great importance during dental procedures. The aim of the present study was to assess the success rate of two anesthetic agents (bupivacaine and lidocaine) for IANB when treating teeth with irreversible pulpitis. Materials and Methods: Sixty volunteer male and female patients who required root canal treatment of a mandibular molar due to caries participated in the present study. The inclusion criteria included prolonged pain to thermal stimulus but no spontaneous pain. The patients were randomly allocated to receive either 2% lidocaine with 1:80,000 epinephrine or 0.5% bupivacaine with 1:200,000 epinephrine as an IANB injection. The sensitivity of the teeth to a cold test as well as the amount of pain during access cavity preparation and root canal instrumentation were recorded. Results were statistically analyzed with the Chi-Square and Fischer's exact tests. Results: At the final step, fifty-nine patients were included in the study. The success rate for bupivacaine and lidocaine groups were 20.0% and 24.1%, respectively. There was no significant difference between the two groups at any stage of the treatment procedure. Conclusions: There was no difference in success rates of anesthesia when bupivacaine and lidocaine were used for IANB injections to treat mandibular molar teeth with irreversible pulpitis. Neither agent was able to completely anesthetize the teeth effectively. Therefore, practitioners should be prepared to administer supplemental anesthesia to overcome pain during root canal treatment.

Gravity-Injection Core Cooling After a Loss-of-SDC Event n the YGN Units 3 & 4

  • Seul, Kwang-Woo;Bang, Young-Seok;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.476-485
    • /
    • 1999
  • In order to evaluate the gravity-injection capability to maintain core cooling after a loss-of-shutdown-cooling event during shutdown operation, the plant conditions of the Yong Gwang Units 3&4 were reviewed. The six cases of possible gravity-injection paths from the refueling water tank (RWT) were identified and the thermal-hydraulic analyses were performed using the RELAP5/MOD3.2 code. The core cooling capability was significantly dependent on the gravity-injection path, the RCS opening, and the injection rate. In the cases with the pressurizer manway opening higher than the RWT water level, the coolant was held up in the pressurizer and the system pressure continued increasing after gravity-injection. The gravity injection eventually stopped due to the high system pressure and the core was uncovered. In the cases with the injection path and opening on the same leg side, the core cooling was dependent on whether the water injected from the RWT passed the core region or not. However, in the cases with the injection path and opening on the different leg side, the system was well depressurized after gravity-injection and the core boiling was successfully prevented for a long-term transient. In addition, from the sensitivity study on the gravity-injection flow rate, it was found that about 54 kg/s of injection rate was required to maintain the core cooling and the core cooling could be provided for about 10.6 hours after event with that injection rate from the RWT. Those analysis results would provide useful information to operators coping with the event.

  • PDF