• 제목/요약/키워드: Thermal Sensitivity

Search Result 636, Processing Time 0.286 seconds

분무성형을 통한 과공정 Aㅣ-Si 합금 제조 및 기계적 특성 (Fabrication of Hypereutectic Spray-formed Al-Si Alloy and Its Deformation Behavior)

  • 하태권;김요섭;박우진;이언식;안상호;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.20-23
    • /
    • 2001
  • Hypereutectic Al-25Si alloy, which is expected to be applied to the cylinder-liner-part of the engine-block of an automobile due to its excellent wear resistance, low density and low thermal expansion coefficient, has been fabricated through a spray forming process. The obtained microstructure of the hypereutectic Al-25Si alloy appeared to consist of Al matrix and equiaxed Si particles of average diameter of 5-7 mm. To characterize the deformation behavior of this alloy, a series of load relaxation and compression tests have been conducted at temperatures ranging from RT to $500^{\circ}C$. The strain rate sensitivity parameter (m) of this alloy has been found to be very low (0.1) below $400^{\circ}C$ and reached maximum value of about 0.2 at $500^{\circ}C$. During the deformation above $300^{\circ}C$ in compression, strain softening has been observed. The diagram of extrusion pressure vs. ram-speed has been constructed. The extrusion has been successfully conducted at the temperatures of $300^{\circ}C$ and above with the ratio of area reduction of 28 and 40 in this study.

  • PDF

온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동 (A study on abrasive wear characteristics of side plate of FRP ship)

  • 김병탁;고성위
    • 수산해양기술연구
    • /
    • 제45권3호
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.

열화학적 방법에 의한 산소센서용 세리아 나노분말 합성 (Synthesis of Nanostructured Ceria Powders for an Oxygen-sensor by Thermochemical Process)

  • 이동원;최준환;임태수;김용진
    • 한국분말재료학회지
    • /
    • 제13권3호
    • /
    • pp.192-198
    • /
    • 2006
  • The nanostructured cerium oxide powders were synthesized by spray thermal decomposition process for the use as the raw materials of resistive oxygen sensor. The synthesis routes consisted of 1) spray drying of water based organic solution made from cerium nitrate hydrate ($Ce(NO_3){_3}6H_2O$) and 2) heat treatment of spray dried precursor powders at $400^{\circ}C$ in air atmosphere to remove the volatile components and identically to oxidize the cerium component. The produced powders have shown the loose structure agglomerated with extremely fine cerium oxide particles with about 15 nm and very high specific surface area ($110m^2/g$). The oxygen sensitivity, n ($Log{\propto}Log (P_{O2}/P^o)^{-n}$ and the response time, $t_{90}$ measured at $600^{\circ}C$ in the sample sintered at $1000^{\circ}C$, were about 0.25 and 3 seconds, respectively, which had much higher performances than those known in micron or $100{\sim}200nm$ sized sensors.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • 제5권6호
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

스코치/가황시간의 상관관계에 관한 연구 (Study of the Scorch/Cure time Relationships)

  • 류진호;김창희;오택수
    • Elastomers and Composites
    • /
    • 제31권1호
    • /
    • pp.33-42
    • /
    • 1996
  • NR, NBR, and CR rubber were prepared by mixing filler in various ratios. Their vulcanization characteristics and thermal properties were studied. Vulcanization characteristics were investigated using cure curve that had been obtained from oscillating disk rheometer study. The Arrhenius law is known to describe the relationship between cure time and temperature of most elastomers. Curing could be done by the addition of sulfur, peroxides, and proper acceleratores. The optimum cure time that affects desirable values of modulus and tensile strength of the vulcanizate is taken as t90 as measured by a rheometer. Rubbers were cured in the rheometer at temperatures ranging from $130^{\circ}C\;to\;180^{\circ}C$ in order to check the validity of the curing system used. A linear relationship between ln(ts2) and ln(t90) was found for all elastomers. The term sensitivity has been used to describe the relationship between a change of ts2 to the corresponding change of t90 due to an increment of temperature. This is related to the formula of the compound.

  • PDF

열처리에 따른 SnO2 박막의 표면형상 (Influence of Thermal Treatment on Surface Morphology of Tin Dioxide Thin Films)

  • 박경희;류현욱;서용진;이우선;홍광준;박진성
    • 한국재료학회지
    • /
    • 제13권7호
    • /
    • pp.442-446
    • /
    • 2003
  • Tin dioxide ($SnO _2$) thin films were deposited at $375^{\circ}C$ on alumina substrate by metal-organic chemical vapor deposition. A few hillocks like a cauliflower were observed and the number of hillock on thin film surface increased with annealing temperature in air atmosphere. The oxygen content and the binding energy during air annealing at$ 500^{\circ}C$ came to close the stoichiometric $SnO_2$. The cauliflower hillocks seem to be the result of the continuous migration of the tiny grains to release the stress of an expanded grain. Sensitivity of CO gas depended on annealing temperature and increased with increasing annealing temperature.

Static Structural Analysis on the Mechanical behavior of the KALIMER Fuel Assembly Duct

  • Kim, Kyung-Gun;Lee, Byoung-Oon;Woan Hwang;Kim, Young ll;Kim, Yong su
    • Nuclear Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.298-306
    • /
    • 2001
  • As fuel burnup proceeds, thermal gradients, differential swelling, and inter-assembly loading may induce assembly duct bowing. Since duct bowing affects the reactivity, such as long or short term power-reactivity-decrement variations, handling problem, caused by top end deflection of the bowed assembly duct, and the integrity of the assembly duct itself. Assembly duct bowing were first observed at EBR-ll in 1965, and then several designs of assembly ducts and core restraint system were used to accommodate this problem. In this study, NUBOW-2D KMOD was used to analyze the bowing behavior of the assembly duct under the KALIMER(Korea Advanced Liquid MEtal Reactor) core restraint system conditions. The mechanical behavior of assembly ducts related to several design parameters are evaluated. ACLP(Above Core Load Pad) positions, the gap distance between the ducts, and the gap distance between the duct and restraint ring were selected as the sensitivity parameter for the evaluation of duct deflection.

  • PDF

원자력 이용 고체산화물 고온전기분해 수소 및 합성가스 생산시스템의 열역학적 효율 분석 연구 (A Study on Thermodynamic Efficiency for HTSE Hydrogen and Synthesis Gas Production System using Nuclear Plant)

  • 윤덕주;고재화
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.416-423
    • /
    • 2009
  • High-temperature steam electrolysis (HTSE) using solid oxide cell is a challenging method for highly efficient large-scale hydrogen production as a reversible process of solid oxide fuel cell (SOFC). The overall efficiency of the HTSE hydrogen and synthesis gas production system was analyzed thermo-electrochemically. A thermo-electrochemical model for the hydrogen and synthesis gas production system with solid oxide electrolysis cell (SOEC) and very high temperature gas-cooled reactor (VHTR) was established. Sensitivity analyses with regard to the system were performed to investigate the quantitative effects of key parameters on the overall efficiency of the production system. The overall efficiency with SOEC and VHTR was expected to reach a maximum of 58% for the hydrogen production system and to 62% for synthesis gas production system by improving electrical efficiency, steam utilization rate, waste heat recovery rate, electrolysis efficiency, and thermal efficiency. Therefore, overall efficiency of the synthesis production system has higher efficiency than that of the hydrogen production system.

Fabrication and characterization of silicon-based microsensors for detecting offensive $CH_3SH\;and\; (CH_3)_3N$ gases

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • 제6권1호
    • /
    • pp.38-42
    • /
    • 2008
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromachining techniques. The sensing materials used to detect the offensive $CH_3SH$ and $(CH_3)_3N$ gases are 1 wt% Pd-doped $SnO_2$ and 6 wt% $Al_2O_3$-doped ZnO, respectively. The optimum operating temperatures of the devices are $250^{\circ}C$ and $350^{\circ}C$ for $CH_3SH$ and $(CH_3)_3N$, respectively and the corresponding heater power is, respectively, about 55mW and 85mW. Excellent thermal insulation is achieved by the use of a double-layer membrane: i.e. $0.2{\mu}m$-thick silicon nitride and $1.4{\mu}m$-thick phosphosilicate glass. The sensors are mechanically stable enough to endure the heat cycles between room temperature and $350^{\circ}C$, at least for 30 days.

고온 M/NEMS용 3C-SiC 마이크로 히터 특성 (The characteristics of polycrystalline 3C-SiC microhotplates for high temperature M/NEMS)

  • 정재민;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.252-252
    • /
    • 2008
  • The microhotplates consisting of a Pt-ased heating element on AlN/poly 3C-SiC layers were fabricated. The microhotplate has a $600{\mu}m{\times}600{\mu}m$ square shaped membrane which made of $1{\mu}m$ thick ploycrystalline 3C-SiC suspended by four legs. 3C-SiC is known for excellent chemical durability, mechanical strength and sustaining of high temperature. The membrane is fabricated by surface micromachining using oxidized Si sacrificial layer. The Pt thin film is used for heating material and resist temperature sensor. The fabrication methodology allows intergration of an array of heating material and resist temperature detector. For reasons of a short response time and a high sensitivity a uniform temperature profile is desired. The dissipation of microhotplate was examined by a IR thermoviewer and the power consumption was measured. Measured and simulated results are compared and analyzed. Thermal characterization of the microhotplates shows that significant reduction in power consumption was achieved using suspended structure.

  • PDF