• Title/Summary/Keyword: Thermal Runaway

Search Result 84, Processing Time 0.029 seconds

The Study on SVL and Earth Connectivity Conductor in Under Ground Cable System (지중송전계통에서 SVL 및 병행지선 설치 검토)

  • Kim, J.N.;Kim, N.Y.;An, M.K.;Lee, S.J.;Heo, Harris;Kim, K.M.
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.158-160
    • /
    • 2006
  • The role of SVL (Sheath voltage limiter) in cable system is to protect the PVC(or PE) jacket in case of transient overvoltage resulting from lightning and other causes. But, in Korea, there is so many SVL failure cases resulting from power frequency overvoltage. So, the paper investigates the phenomenon of failure SVL comparing with other countries' system. Finally, the installation of ECC(Earth Connectivity Conductor) in under ground cable system is presented to remove the possibilities of SVL thermal runaway due to the power frequency overvoltage.

  • PDF

A study on stability criterion for cryocooler-operating HTS coils (냉동기운전 고온초전도코일의 안정성평가기준에 관한 연구)

  • Ishiyama, Atsushi;Shimizu, Satoshi;Kim, Scok-Beom;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.587-589
    • /
    • 2000
  • In this paper, the stability criterion for cryocooler-cooled high-temperature superconducting (HTS) coils is discussed. We choose the current, Itr at which "thermal runaway" occurs, as a stability criterion and adopt the relationship between the cooling power of GM cryocooler and the heat generation in coil system to evaluate Itr. We also investigate the transient behavior during a quench process in HTS coils by a newly developed FEM computer program.

  • PDF

Degradation Mechanism of ZnO Ceramic Varistors with the Time on the DC Stress Test (DC 스트레스 시간에 따른 ZnO 세라믹 바리스터의 열화기구)

  • 소순진;김영진;소병문;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.857-860
    • /
    • 2000
  • The objective of this paper is to demonstrate degradation phenomena through DC degradation tests and predicts degradation phenomena as a function of time from the tests. The ZnO varistor used in this investigation were fabricated by standard ceramic techniques. Especial, these were sintered in nitrogen atmosphere, at 2 h, for $1300^{\circ}C$. The conditions of DC degradation test were 115$\pm$$2^{\circ}C$for 0, 2, 4, and 8 h, respectively. To demonstrate the degradation phenomena of ZnO varistors, Voltagecurrent analyses were performed before and after the degradation test, and frequency analyses were used with the time of the degradation tests. It was found that the degradation occurred in not grain but grain boundary and the degradation behavior of varistors was unsymmetrically degraded with the direction of tests.

  • PDF

Time to ignition analysis of AP/HTPB composite propellant (열 하중에 의한 AP/HTPB 복합추진제의 발화특성 모델링 연구)

  • Jung, Tae-Yong;Kim, Hyung-Won;Do, Young-Dae;Yoo, Ji-Chang;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.279-282
    • /
    • 2008
  • The AP/HTPB composite propellant is a common choice for solid rocket propulsion. The externally heated rocket via fires, for instance, can cause the energetic substance to ignite, and this may lead to a thermal runaway event marked by a severe explosion. In order to develop preventive measures to reduce the possibility of such accidents in propulsion systems, we investigate the ignition and initiation properties of AP/HTPB propellant.

  • PDF

Smart IoT parking lot for minimize EV fire damage (전기차 화재 피해 최소화를 위한 스마트 IoT 주차장)

  • So-Hyeon Park;Seo-young An;Kyung-June Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.770-771
    • /
    • 2023
  • '환경친화적 자동차의 개발 및 보급 촉진에 관한 법률'에 따라 주거지역 내의 전기차 충전기 설치 및 보급이 빠르게 확산 중이다. 전기 자동차는 충전 중 화재 시 리튬이온 배터리 열폭주(thermal runaway) 현상 때문에 쉽게 진압하지 못한다는 단점이 존재한다. 이에 따라 지하 주차장에서의 전기 자동차 충전 중 화재 시 피해 최소화를 위한 스마트 IoT 주차장을 기획하고 개발하였다.

Highly Linear 1 W Power Amplifier MMIC for the 900 MHz Band Using InGaP/GaAs HBT (InGaP/GaAs HBT를 이용한 900 MHz 대역 1 W급 고선형 전력 증폭기 MMIC 설계)

  • Joo, So-Yeon;Han, Su-Yeon;Song, Min-Geun;Kim, Hyung-Chul;Kim, Min-Su;Noh, Sang-Youn;Yoo, Hyung-Mo;Yang, Youn-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.897-903
    • /
    • 2011
  • This paper presents a highly linear power amplifier MMIC, having an output power level of about 1 watt, based on InGaP/GaAs hetero-junction bipolar transistor(HBT) technology for the 900 MHz band. The active bias circuit is applied to minimize the effect of temperature variation. Ballast resistors are optimized to prevent a current collapse and a thermal runaway. The fabricated power amplifier exhibited a gain of 17.6 dB, an output P1dB of 30 dBm, and a PAE of 44.9 % at an output P1dB from the one-tone excitation. It also showed a very high OIP3 of 47.3 dBm at an average output power of 20 dBm from the two-tone excitation.

An Experimental Study on the Development and Possible Solution of Thermal Runaway Model of Electronic Moxibustion with System Error (전자뜸의 시스템 오류에 의한 열폭주 모델 구현 및 해결 방법에 관한 실험적 연구)

  • Lee, Byung Wook;Oh, Yong Taek;Jang, Hansol;Choi, Seong-Kyeong;Jo, Hyo Rim;Sung, Won-Suk;Kim, Eun-Jung
    • Korean Journal of Acupuncture
    • /
    • v.38 no.4
    • /
    • pp.282-289
    • /
    • 2021
  • Objectives : The purpose of this study is to construct a model of the possible thermal runaway of electronic moxibustion and to implement an appropriate risk management method. Methods : To reproduce the system error situation of the electronic moxibustion circuit equipped with microcontroller unit, temperature sensor and heater, a code was set to disable the signal input to temperature sensor and maintain "high" heating signal to heater. The temperature change of electronic moxibustion was compared between 3 types of heater module; module 1 consisting of a combination of heater+0 ohm+0 ohm resistance, module 2 consisting of a combination of heater+Polymeric Positive Temperature Coefficient (PPTC)+0 ohm resistance, and module 3 consisting of a combination of heater+PPTC+10 ohm resistance. The temperature change was measured using a polydimethylsiloxane (PDMS) silicone phantom. After maintaining surface temperature of the phantom at 31~32℃ for 20 seconds, electronic moxibustion was applied. After operating electronic moxibustion, the temperature change was measured for 660 seconds on the surface and 900 seconds at 2 mm depth. Results : Regardless of the module type, the time-dependent change in temperature showed a rapid rise followed by a gentle curve, and a sharp drop in temperature after reaching the maximum temperature about 10 minutes after the switching the moxibustion on. Temperature measured at the depth of 2 mm below the surface increased slower and to a lesser extent. Module 1 reached highest peak temperature with largest change of temperature at both depths followed by module 2, and 3. Conclusions : Through the combination of PPTC+resistance with the heater of electronic moxibustion, it is possible to limit the rise in temperature even with the software error. Thus, this setting can be used as an independent safety measure for the electronic moxibustion control unit.

Poly(Imide) Separator Functionalized by Melamine Phosphonic Acid for Regulating Structural and Thermal Stabilities of Lithiumion Batteries

  • Ye Jin Jeon;Juhwi Park;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.365-372
    • /
    • 2024
  • As the energy density of lithium-ion batteries (LIBs) continues to increase, various separators are being developed to with the aim of improving the safety performance. Although poly(imide) (PI)-based separators are widely used, it is difficult to control their pore size and distribution, and this may further increase the risk associated. Herein, a melamine phosphonic acid (MP)-coated PI separator that can effectively control the pore structure of the substrate is suggested as a remedy. After the MP material is embedded into the PI separator with a simple one-step casting process, it effectively clogs the large pores of the PI separator, preventing the occurrence of internal short circuits during charging. It is anticipated that the MP material can also suppress rapid thermal runaway upon cycling due to its ability to reduce the internal temperature of the LIB cell caused by the desirable endothermic behavior around 300℃. According to experiments, the MP-coated PI separator not only decreases the thermal shrinkage rate better than commercial poly(ethylene) (PE) separators but also exhibits a desirable Gurley number (109.6 s/100 cc) and electrolyte uptake rate (240%), which is unique. The proposed separator is electrochemically stable in the range 0.0-5.0 V (vs. Li/Li+), which is the typical working potential of conventional electrode materials. In practice, the MP-coated PI separator exhibits stable cycling performance in a graphite-LiNi0.83Co0.10Mn0.07O2 full cell without an internal short circuit (retention: 90.3%).

Development of Environmentally Friendly Backfill Materials for Underground Power Cables Considering Thermal Resistivity (열 저항특성을 고려한 지중송전관로 친환경 되메움재 개발)

  • Kim, Daehong;Oh, Gidae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need for cable backfill materials to be maintained at a low thermal resistivity during the service period. Temperatures greater than $50^{\circ}C$ to $60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. The results of Dong-rim river sand (relatively uniform) show that as water content level increases, thermal resistivity tends to decrease, whereas the thermal resistivity on dry condition is very high value($260^{\circ}C-cm/watt$). In addition, other materials(such as Jinsan granite screenings, A-2(sand and gravel mixture), E-1(rubble and granite screenings mixture) and SGFC(sand, gravel, fly-ash and cement mixture)) are well-graded materials with low thermal resistivity($100^{\circ}C-cm/watt$ when dry). Based on this research, 4 types of improved materials were suggested as the environmentally friendly backfill materials with low thermal resistivity.

Development of Backfill Materials for Underground Power Cables Considering Thermal Effect (열특성 효과를 고려한 지중송전관로용 되메움재 개발)

  • Lee Dae-Soo;Kim Dae-Hong;Hong Sung-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.41-52
    • /
    • 2005
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need fur cable backfill materials that can maintain a low thermal resistivity even while subjected to high temperatures for prolonged periods. Temperatures greater than $50^{\circ}C\;to\;60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were carried out for Dongrim river sand, a relatively uniform sand of very high thermal resistivity, $50^{\circ}C-cm/watt\;at\;10\%$ water content, $260^{\circ}C-cnuwatt$ when dry, and Jinsan granite screenings, and D-2 (sand and granite screenings mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity, about $35^{\circ}C-cm/watt$ when at 10 percent water content, $100^{\circ}C-cm/watt$ when dry. Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity and the applicability was assessed through field tests.