• Title/Summary/Keyword: Thermal Resistance Matrix

Search Result 140, Processing Time 0.03 seconds

A Study on a Method of Making the Matrix far the Numerical Analysis of Underground Temperature (지하공간온도의 수치해석을 위한 행렬 구성방법에 관한 연구)

  • 정수일
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2001
  • It is often said that the supply of fossil fuels in use for energy source will last only for 40 years. Futhermore, statistics shows that most of the fuels are imported from outside and that 30-40% of total cost for housing in Korea. One of those methods for reducing the energy cost for housing is to use underground space. Being used well, it may bring a considerable saving of energy since the underground space keeps its air cool in summer and warm in winter. To use underground space, we need to analyse its temperature first. For this purpose, what is generally used is the numerical analysis with the use of nodal system. That is, we can calculate a specific underground temperature with the matrix of thermal resistance after we make a nodal system. However, the existing numerical analysis programs need usually high cost and require a computer with large capacity. So they are seldom used in practice. Considering such problems, this study seeks to find a method for making the matrix of thermal resistance operatable on PC level.

  • PDF

The Effect of SiCp Size on the Mechanical Preperties of ($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 Hybrid Mg Composites (($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 하이브리드 Mg 복합재료의 기계적 특성에 미치는 SiCp크기의 영향)

  • 하창식;김봉룡;조경목;박익민;최일동
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.29-33
    • /
    • 2001
  • In the present study, AZ91Mg/$\textrm{Al}_2\textrm{O}_3$ short fiber+SiC particulates hybrid metal matrix composites(MMCs) were fabricated by squeeze casting method. Different particulate sizes of 45, 29 and $9\mu\textrm{m}$ were hybridized with 5% volume fraction to investigate the effect of SiC particulates size on microstructure, mechanical and thermal properties such as hardness, flexural strength, wear resistance and thermal expansion. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements. Some aggregation of SiC particulates caused by particle pushing was observed especially in the hybrid composites containing in fine particulates($9\mu\textrm{m}$). The hardness and flexural strength were improved by decreasing particulates size, whereas wear resistance improved by increasing particulates size because of large particulates restricting matrix wear from contacted stress. Regardless of particulates size, thermal expansion of composites was the same. This may be because the content of particulates was in all cases 5 volume fraction.1

  • PDF

Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites

  • Parhizkar, Mehran;Shelesh-Nezhad, Karim;Rezaei, Abbas
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2016
  • In an attempt to reach a balance of performances in homo-polypropylene based system, the effects of single and hybrid reinforcements inclusions comprising calcium carbonate nanoparticles (2, 4 and 6 phc) and glass fibers (10 wt.%) on the mechanical and thermal properties were investigated. Different samples were prepared by employing twin-screw extruder and injection molding machine. In morphological studies, the uniform distribution of glass fibers in PP matrix, relative adhesion between glass fibers and polymer, and existence of nanoparticles in polymer matrix were observed. $PP/CaCO_3$ (6 phc) as compared to pure PP and PP/GF had superior tensile and flexural strengths, impact resistance and deformation temperature under load (DTUL). $PP/GF/CaCO_3$ (6 phc) composite displayed comparable tensile and flexural strengths and impact resistance to neat PP, while its tensile and flexural moduli and deformation temperature under load (DTUL) were 436%, 99% and $26^{\circ}C$greater respectively. The maximum impact resistance was observed in $PP/CaCO_3$(6 phc). The highest DTUL was perceived in PP hybrid nanocomposite containing 10 wt.% glass fiber and 4 phc $CaCO_3$ nanoparticle.

Material Property Characterization Method and Experimental Measurement of the Effective Thermal Conductivities of Woven Fabric Composite Materials (직물 복합재료의 물성치 특성화 기법 및 실험적 계측)

  • Moon, Young-Kyu;Goo, Nam-Seo;Kim, Cheol;Woo, Kyung-Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.64-69
    • /
    • 2001
  • In general, laminate effective orthotropic thermal conductivities are dependent on fiber and matrix material properties, fiber volume fraction and fabric geometric parameters. This paper deals with the predicting method of the transverse and the in-plane thermal conductivities of plain weave fabric composites based on the three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit cell model that characterizes the periodically repeated pattern of plain weave. Also, an experiment apparatus is setup to measure the thermal conductivities of composite material. The numerical and experimental results of carbon/epoxy plain weave are compared.

  • PDF

Fabrication of Aluminum Nitride Reinforced Aluminum Matrix Composites via Plasma Arc Melting under Nitrogen Atmosphere (플라즈마 아크 용해 공정으로 자발합성된 질화알루미늄 강화 알루미늄기지 복합재료의 개발)

  • Sujin Jeong;Je In Lee;Eun Soo Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2023
  • In this study, aluminum nitride (AlN) reinforced aluminum (Al) matrix composites are fabricated via plasma arc melting under a nitrogen atmosphere. Within a minute of the chemical reaction between Al and N, dispersed AlN with the shape of transient and lamellar layers is in situ formed in the Al matrix. The composite contains 10 vol.% AlN reinforcements with low thermal resistance and strong bonding at the interfaces, which leads to the unique combination of thermal expansivity and conductivity in the resulting composites. The coefficient of thermal expansion of the composite can be further reduced when Si was alloyed into the Al matrix, which proposes the potential of the in situ Al matrix composites for thermal management applications.

Characteristic of HVOF AISI316-WC Coating Layer on Stainless Steel Separator for PEMFC (고분자 전해질 연료전지용 스테인리스강 분리판의 HVOF AISI316-WC 코팅층 특성)

  • Nam, Dae-Geun;Kang, Nam-Hyun;Park, Yeong-Do;Kim, Young-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1-5
    • /
    • 2008
  • Stainless steels have been widely considered as metallic separators, due to their passive surface film, which is good for corrosion resistance. However, the high resistivity of the passive film increases interfacial contact resistance between the separators and electrodes. Stainless steels thermal spray coated with a mixture of tungsten carbide and stainless steel powders showed that the coated layer safely combined with the matrix but they suffered many internal defects including voids and cracks. Many cracks were formed in the coated layer and the interface of the matrix and the coated layer during the rolling process. The coated and rolled stainless steels showed lower interfacial contact resistance and corrosion resistance than bare stainless steel because of low resistivity of tungsten carbide and numerous defects, which caused crevice corrosion, in the coated layer.

  • PDF

Nondestructive Damage Sensing and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소섬유 강화 Epoxyacrylate 복합재료의 UV 및 열경화에 따른 비파괴적 손상 감지능 및 경화 Monitoring)

  • Kong, Jin-Woo;Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.261-264
    • /
    • 2002
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermosetting composite with different curing processes was investigated using electro-micromechanical test. After curing, residual stress was monitored by measurement of electrical resistance (ER) and then it was compared to correlate with various curing processes. In thermal curing, curing shrinkage appeared significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient (TEC). The change in electrical resistance (ΔR) on thermal curing was higher than that on ultraviolet (UV) curing. For thermal curing, apparent modulus was the highest and reaching time until same strain was faster. So far thermal curing shows strong durability on the IFSS after boiling test.

  • PDF

Fabrication of Al/Al-SiC Composites by Thermal Spray Process (용사법에 의한 Al/Al-SiC 복합재료의 제조)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • Metal matrix composites(MMCs) reinforced with ceramic particulates are receiving increasing attention because their high specific strength, low coefficient of thermal expansion and excellent wear resistance. Especially, Al-based composites(AMCs) have been widely applied for the aerospace and automotive industries. Such composites are mainly fabricated by the cast, powder metallurgy and infiltration process. In this study, SiC particulate reinforced Al-based composites were fabricated by thermal spray process and their wear behavior were investigated. Composites with different spray parameter were fabricated by using flame spray apparatus. Microstructure and wear behavior of the composites were observed by scanning electron microscope(SEM) and electron probe micro-analysis(EPMA).

  • PDF

Nondestructive Interfacial Evaluation and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing Using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소 섬유 강화 에폭시아크릴레이트 복합재료의 자외선과 열경화에 따른 경화 모니터링 및 비파괴적 계면 평가)

  • 박종만;공진우;김대식;이재락
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2003
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermo setting composite with different curing processes were investigated using electro-micromechanical test. After curing, the residual stress was monitored by measurement of electrical resistance and then compared to various curing processes. In thermal curing case, matrix tensile strength, modulus and interfacial shear strength were higher than those of ultraviolet curing case. The shrinkage measured during thermal curing occurred significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient. The apparent modulus measured in the thermal curing indicated that mechanical and interfacial properties were highly improved. The reaching time to the same stress of thermal curing was faster than that of UV curing case.

Effective Thermal Conductivities of CE3327 Plain-weave Fabric Composite (CF3327 평직 복합재료의 열전도도)

  • 구남서;문영규;우경식
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.27-34
    • /
    • 2002
  • The purpose of this study is to measure and predict the thermal conductivity of CF3327 plain-weave fabric composite made by Hankuk Fiber, Co. An experiment apparatus based on the comparative method has been made to measure the thermal conductivities of the composite material. Its accuracy was proved by measuring the thermal conductivity of graphite which is well-known. Micro-mechanical approaches are useful to assess the effect of parameters such as fiber and matrix material properties, fiber volume fraction and fabric geometric parameters on the effective material properties of composites. In this study, prediction was based on the concept of three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit ceil model that characterized the periodically repeated pattern of a plain weave. The numerical results were compared with experimental one and good agreement was observed. Also, the effects of fiber volume fraction on the thermal conductivity of several composites has been investigated.