• 제목/요약/키워드: Thermal Ratchet

검색결과 5건 처리시간 0.009초

316L 시험원통의 열라체팅 구조시험에 관한 연구 (A Study on Thermal Ratcheting Structure Test of 316L Test Cylinder)

  • 이형연;김종범;구경회
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.243-249
    • /
    • 2001
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The inelastic deformation of the reactor baffle cylinder can occur due to the moving temperature distribution along the axial direction as the hot free surface moves up and down under the cyclic heat-up and cool-down of reactor operations. The ratchet deformations were measured with the laser displacement sensor and LVDTs after cooling the structural specimen which experiences thermal load up to $550^{\circ}$ and the temperature differences of about $500^{\circ}C$. During structural thermal ratchet test, the temperature distribution of the test cylinder along the axial direction was measured from 28 channels of thermocouples and the temperatures were used for the ratchet analysis. The thermal ratchet deformation analysis was performed with the NONSTA code whose constitutive model is nonlinear combined kinematic and isotropic hardening model and the test results were compared with those of the analysis. Thermal ratchet test was carried out with respect to 9 cycles of thermal loading and the maximum residual displacements were measured to be 1.8mm. It was shown that thermal ratchet load can cause a progressive deformation to the reactor structure. The analysis results with the combined hardening model were in reasonable agreement with those of the tests.

  • PDF

316L 스테인리스강 원통 구조물의 열라체팅 변형 시험 및 해석 (Test and Analysis of Thermal Ratcheting Deformation for 316L Stainless Steel Cylindrical Structure)

  • 이형연;김종범;이재한
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.479-486
    • /
    • 2002
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature structures of liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The thermal ratchet deformation at the reactor baffle cylinder of the liquid metal reactor can occur due to the moving temperature distribution along the axial direction as the sodium free surface moves up and down under the cyclic heat-up and cool-down transients. The ratchet deformation was measured with the laser displacement sensor and LVDTs after cooling the structural specimen which is heated up to 55$0^{\circ}C$ with steep temperature gradients along the axial direction. The temperature distribution of the test cylinder along the axial direction was measured with 28 channels of thermocouples and was used for the ratchet analysis. The thermal ratchet deformation was analyzed with the constitutive equation of nonlinear combined hardening model which was implemented as ABAQUS user subroutine and the analysis results were compared with those of the test. Thermal ratchet load was applied 9 times and the residual displacement after 9 cycles of thermal load was measured to be 1.79mm. The ratcheting deformation shapes obtained by the analysis with the combined hardening model were in reasonable agreement with those of the structural tests.

Progressive Inelastic Deformation Characteristics of Cylindrical Structure with Plate-to-Shell Junction Under Moving Temperature Front

  • Lee, Hyeong-Yeon;Kim, Jong-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.400-408
    • /
    • 2003
  • A study on the progressive inelastic deformation behavior of the 316 L stainless steel cylindrical structure with plate-to-shell junction under moving temperature front was carried out by structural test and analysis. The structural test intends to simulate the thermal ratcheting behavior occurring at the reactor baffle of the liquid metal reactor as free surface of hot sodium pool moves up and down under plant transients. The thermal ratchet load that heats the specimen up to 550$^{\circ}C$ was applied repeatedly and residual deformation was measured. The thermal ratcheting test was carried out with two types of cylindrical structures, one with plate to-shell junction and the other without the junction to investigate the effects of the geometric discontinuities on the global ratcheting deformation. The temperature distributions of the test specimens were measured and were used for the ratcheting analysis. The ratchet deformations were analyzed with the constitutive equation of the non-linear combined hardening model. The analysis results were in good agreement with those of the structural tests.

유도초음파를 이용한 원통형 쉘의 열 라체팅 변형 탐지 (Detection of Thermal Ratcheting Deformation for Cylindrical Shells by Ultrasonic Guided Wave)

  • 주영상;이형연;김종범;박창규;이재한
    • 비파괴검사학회지
    • /
    • 제26권5호
    • /
    • pp.297-305
    • /
    • 2006
  • 액체금속로 원자로배플 및 상부내부구조물 등은 고온소듐의 자유액면에 접하기 때문에 소듐액면의 상하 이동으로 열 라체팅 손상이 발생할 수 있다. 액체금속로 내부구조물의 열 라체팅 변형 손상을 감지할 수 있는 가동중검사 기법의 개발이 필요하다. 본 연구에서는 유도초음파를 이용하여 원통형 내부구조물의 열 라체팅 변형 손상을 감지할 수 있는 검사 방법을 제시하였다. 원형통 구조물의 열 라체팅 변형 거동의 모사를 위해 SS 316L 재료의 원통 시험편을 제작하고 $550^{\circ}C$ 이상의 급격한 열하중을 가하면서 냉각수의 자유액면의 상하 이동 시험을 실시하였다. 스테인리스 강 재질의 박판에서의 유도초음파의 분산 특성을 분석하여 $A_0$ 모드를 열 라체팅 변형을 탐지할 수 있는 유효 모드로 선정하였다. 제작된 라체팅 변형 원통형 셀 구조물에서 원주방향으로 반복하여 회전하는 $A_0$ 모드의 전파시간차를 측정함으로써 열 라체팅 변형 탐지 가능성을 확인하였다.