• 제목/요약/키워드: Thermal Power Generation

검색결과 626건 처리시간 0.03초

저 합금강재(2.25Cr-1.0Mo) 반복 보수용접 열영향부의 특성 (A Characteristics of the Multiple Repair Welding HAZs in a Low Alloy-Steel(2.25Cr-1.0Mo))

  • 이철구;안종석;이남혁;이길재
    • Journal of Welding and Joining
    • /
    • 제26권1호
    • /
    • pp.50-55
    • /
    • 2008
  • A low alloy-steel(2.25Cr-1.0Mo) has been widely used for boiler piping, header and tubes in high temperature and pressure conditions of the thermal power plant. It is common knowledge that the repair welding is permitted two or three times by customary practice rule, but there is no regulation to limit the number of repair welding base on the study heat-affected zone(HAZ), which is the weakest zone when repair welding is under taken, by experiments about the metallographic degradation and mechanical properties. Therefore, this study aims to verify the reliability of 5 times repair welding through conducting the experimental observation in the mechanical and the metallographic change on HAZ varying repair welding times. In results of the experiments, it is concluded that the reliability was kept in HAZ even up to the fifth repairs.

최적전원차성을 위한 절감 시뮬레이션 방법의 개발 (The Development of the Simplified Simulation Technique for the Best Generation Mix)

  • 송길영;최재석
    • 대한전기학회논문지
    • /
    • 제37권6호
    • /
    • pp.339-349
    • /
    • 1988
  • The simplified simulation technique for the best generation mix is developed and the studied results are described. The best generation mix over study time from the economic point of view can be easily constructed by this technique. Generator maintenance, the operation of pumpgenerator and LNG thermal generator with limited energy are simulated variously, so a role of each generator is also easily evaluated. Through parametric analysis, useful planning guide points are obtained for the best generation mix transition, nuclear power plant construction cost, ruanium cost , oil cost, coal cost and midnight factor in the study case corresponding to real power system size model.

  • PDF

미활용 열에너지를 이용한 바이너리 발전과 신경망 제어 (Binary Power plant using unused thermal energy and Neural Network Controllers)

  • 한건영;박성대
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1302-1309
    • /
    • 2021
  • 최근, 정부는 경기침체 극복에 대응하고 구조적 변환에 따른 국제활동을 주도하기 위한 국가발전 전략으로 "한국판 뉴딜 종합계획"을 도입하였다. 한국판 뉴딜에서 에너지와 관련된 '그린뉴딜'은 배출 가스 제로화를 목표로 하고 저탄소 녹색 경제로의 전환을 가속화하는 것이며, 이를 위해 정부는 재생에너지 사용 확대를 촉진한다는 계획이다. 본 논문에서는 저탄소 녹색 경제로의 전환을 촉진하기 위해 미활용 저온 열에너지를 활용하는 바이너리 발전과 실제 발전환경에서 무인 자동운전을 통해 저 비용으로 유지관리가 가능한 신경망 기반 제어시스템에 대해 검토한다. 이러한 바이너리 발전의 실현은 태양광, 풍력 등과 더불어 재생에너지의 도입을 가속화 할 것으로 기대된다.

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

Dynamic Model for Ocean Thermal Energy Conversion Plant with Working Fluid of Binary Mixtures

  • Nakamura, Masatoshi;Zhang, Yong;Bai, Ou;Ikegami, Yasuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2304-2308
    • /
    • 2003
  • Ocean thermal energy conversion (OTEC) is an effective method of power generation, which has a small impact on the environment and can be utilized semi-permanently. This paper describes a dynamic model for a pilot OTEC plant built by the Institute of Ocean Energy, Saga University, Japan. This plant is based on Uehara cycle, in which binary mixtures of ammonia and water is used as the working fluid. Some simulation results attained by this model and the analysis of the results are presented. The developed computer simulation can be used to actual practice effectively, such as stable control in a steady operation, optimal determination of the plant specifications for a higher thermal efficiency and evaluation of the economic prospects and off-line training for the operators of OTEC plant.

  • PDF

서로다른 발전방식으로 운전되는 산업용 열병합발전시스템의 최적운전계획 수립 (Operation Scheduling of Industrial Cogeneration System with Each other Generation Mode)

  • 정지훈;이종범;오성근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.354-356
    • /
    • 2000
  • This paper describes the strategy of a daily optimal operational scheduling on cogeneration systems with each other generation mode. The cogeneration systems consists of three generators. auxiiiary devices which are three auxiliary boilers, two waste boilers and three sludge incinerators. One unit that using the back pressure turbin generates the electrical and the thermal energy. The other two units that using the extraction condensing turbine generate the energy. Auxiliary devices operate to supplement the thermal energy to the thermal load with three units. The cogeneration system has a large capacity which is able to supply enough the thermal energy to the thermal load, however the electric power generated is insufficient to satisfy the electrical load. Therefore the insufficient electric energy is supplemented by buying electrical energy from the utility. Simulation was carried out using optimization toolbox. The result reveals that the proposed modeling and strategy can be effectively applied to cogeneration systems with each other generation mode.

  • PDF

Design of a generator control system for small nuclear distributed generation

  • Yoon, Dong-Hee;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.311-318
    • /
    • 2011
  • Small-scale reactors have recently attracted attention as a potential power generation source for the future. The Regional Energy Research Institute for Next Generation is currently developing a small-scale reactor called Regional Energy rX 10 MVA (REX-10). The current paper deals with a power system to be used with small-scale reactors for multi-purpose regional energy systems. This small nuclear system can supply electric and thermal energy like a co-generation system. The electrical model of the REX-10 has been developed as a part of the SCADA system. REX-10's dynamic and electromagnetic performance on the power system is analyzed. Simulations are carried out on a test system based on Ulleung Island's power system to validate REX-10 availability on a power system. RSCAD/RTDS and PSS/E software tools are used for the simulation.

히트펌프를 이용한 PEMFC 기반 열병합 발전 시스템 (PEMFC Based Cogeneration System Using Heat Pump)

  • 뚜안앵;김영상;이동근;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.324-330
    • /
    • 2021
  • In recent years, polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system has received more and more attention from energy researchers because beside electricity, the system also meets the residential thermal demand. However, the low-quality heat exited from PEMFC should be increased temperature before direct use or storage. This study proposes a method to utilize the heat exhausted from a 10 kW PEMFC by coupling a heat pump. Two different configuration using heat pump and a reference layout with heater are analyzed in term of thermal and total efficiency. The system coefficient of performance (COP) increases from 0.87 in layout with heaters to 1.26 and 1.29 in configuration with heat pump and cascade heat pump, respectively. Lastly, based on system performance result, another study in economics point of view is proposed.

저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구 (Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat)

  • 김경훈;김세웅;고형종
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

Experimental Study on Combined Ocean Thermal Energy Conversion with Waste Heat of Power Plant

  • Jung, Hoon;Jo, Jongyoung;Chang, Junsung;Lee, Sanghyup
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.215-222
    • /
    • 2019
  • This work is experimental study of 10 kW specialized Combined Ocean Thermal Energy Conversion. We propose a C-OTEC technology that directly uses exhaust thermal energy from power station condensers to heat the working fluid (R134a), and tests the feasibility of such power station by designing, manufacturing, installing, and operating a 10 kW-pilot facility. Power generation status was monitored by using exhaust thermal energy from an existing power plant located on the east coast of the Korean peninsula, heat exchange with 300 kW of heat capacity, and a turbine, which can exceed enthalpy efficiency of 45%. Output of 8.5 kW at efficiency of 3.5% was monitored when the condenser temperature and seawater temperature are $29^{\circ}C$ and $7.5^{\circ}C$, respectively. The evaluation of the impact of large-capacity C-OTEC technology on power station confirmed the increased value of the technology on existing power generating equipment by improving output value and reducing hot waste water. Through the research result, the technical possibility of C-OTEC has been confirmed, and it is being conducted at 200 kW-class to gain economic feasibility. Based on the results, authors present an empirical study result on the 200 kW C-OTEC design and review the impact on power plant.