• 제목/요약/키워드: Thermal Power Generation

검색결과 625건 처리시간 0.032초

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • 제5권2호
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.

1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전 (Design and Self-sustainable Operation of 1 kW SOFC System)

  • 이태희;최진혁;박태성;유영성;남석우
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석 (Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation)

  • 류종혁;정현석;정석권
    • 수산해양기술연구
    • /
    • 제60권2호
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

발전용 소재 단조기술 및 국내 단조업계 동향 (Recent Trend to the Forging Technology of Power Plant Components and Status of Forging Company)

  • 김정태;장희상;김동권;김영득;김동영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.38-41
    • /
    • 2007
  • The increase of $CO_2$ emission by increasing of fossil fuel usage has been understood a major cause of global warming. The supply of electric energy is heavily dependent on the massive thermal power and nuclear power plant before developing the renewable energy to supply the electric energy stably at a low price. The large and sound forged components of pressure vessel, turbine and generator are widely used in power plant such as wind power, hydroelectric power generation, nuclear power and thermal power plant. This paper is discussed the trend of manufacturing technology for pressure vessel and turbine to satisfy the required condition of utility company. It is also introduced a strategy of forging industry to cope with carbon tax.

  • PDF

히스테리시스 손실에 의한 괘도부품의 온도 추정에 관한 연구 (A Study on the Estimation of Temperature in Track Components due to Hystresis Loss.)

  • 김형제;김병탁;백운경
    • 동력기계공학회지
    • /
    • 제5권3호
    • /
    • pp.48-55
    • /
    • 2001
  • In many applications. rubber components undergo dynamic stresses or deformations of fairly large magnitude. Since rubbers are not fully elastic, a part of the mechanical energy is converted into heat due to the hysteresis loss. Heat generation without adequate heat dissipation leads to heat build up. i. e. internal temperature rise. The purpose of this paper is to predict temperature rise caused by the hysteresis loss, in a rubber pad subjected to complex dynamic deformation. In this unsteady thermal analysis, the temperature distributions of track components are displayed in contour shapes and the temperature variations of some important nodes are represented graphically with respect to the running time of the tank.

  • PDF

태양열 발전에서 태양열에너지 수송을 위한 고온 축열 물질의 열절달 특성 (Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation)

  • ;김기만;강용혁;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.190-193
    • /
    • 2008
  • The heat transfer characteristics of molten salt storage system for the solar thermal power generation were investigated. Temperature profiles and the heat transfer coefficients during the storage and discharge stage were obtained with the steam as the heat transfer fluid. Two kinds of inorganic salt were employed as the storage materials and coil type of heat exchanger were installed in both tanks to provide the heat transfer surfaces during the storage and discharge stage. The effects of steam flow rates, flow direction of steam in the storage tank and the initial temperature of storage and discharge tank on the heat transfer were tested.

  • PDF

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung;Kim, Sung Wng
    • 한국세라믹학회지
    • /
    • 제54권2호
    • /
    • pp.75-85
    • /
    • 2017
  • Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

Multi zone Modeling을 이용한 흡기관내의 과급이 온도성층화를 갖는 예혼합압축자기착화엔진에 미치는 영향에 관한 연구 (Effect of the Boost Pressure on Thermal Stratification on HCCI Engine Using Multi-Zone Modeling)

  • 권오석;임옥택
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.248-254
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, a pressure rise rate is a major limitation for high load range and power reduction. Recently, we were able to reduce the pressure rise rate using thermal stratification. Nevertheless, this was insufficient to produce high power. In this study, the reduction of the pressure rise rate using thermal stratification was confirmed and the HCCI engine power was increased using the boost pressure. The rate and engine power were produced by CHEMKIN and modified SENKIN. As a result of increasing the boost pressure, a higher IMEP was attained while the pressure rise rate increased only slightly in the HCCI with thermal stratification.

전기화학적 수소 압축기의 열역학적 성능에 관한 연구 (Study on Thermodynamic Performance of Electrochemical Hydrogen Compressor)

  • 김태헌;김동윤;이동근;김영상;안국영;배용균;박진영;김영
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.141-148
    • /
    • 2023
  • The thermodynamic performance of the electrochemical hydrogen compressor was analyzed to perform a comparative analysis with the performance of the mechanical compressor. The performance was analyzed through the applied current and the measured voltage value. The test results showed that the efficiency of the electrochemical hydrogen compressor was high in the low current density range. In addition, it was confirmed that the amount of increasing compress work of the electrochemical hydrogen compressor is smaller than that of the mechanical compressor. Therefore, it is expected to have higher efficiency than mechanical compression when compressed with a sufficiently high-pressure range.

수소와 질소 혼합 가스의 전기화학적 수소 분리에 관한 연구 (Study on Electrochemical Hydrogen Separation of Hydrogen and Nitrogen Mixture Gas)

  • 김동윤;김태헌;이동근;김영상;안국영;배용균;박진영;김영
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.149-154
    • /
    • 2023
  • In the Fourth Industrial Revolution, hydrogen energy is in the spotlight. There is a difficulty in commercialization due to the lack of hydrogen infrastructure. Therefore, a lot of hydrogen should be imported and a method using ammonia is the most useful. In this study, using the mixed gas of hydrogen and nitrogen generated when ammonia is decomposed, the hydrogen separation performance is to be tested. Hydrogen was separated using an electrochemical hydrogen compressor based on a fuel cell and the experiment was conducted by changing the ratio of hydrogen and nitrogen. In addition, the performance was also compared by the difference both the pressure and the membrane.