• Title/Summary/Keyword: Thermal Network

Search Result 530, Processing Time 0.026 seconds

The effects of various thermal parameters on coil temperature rise in TEFC induction motor (여러가지 열적 변수가 전폐형 유도전동기의 코일온도상승에 미치는 영향에 관한 연구)

  • Yun, Myeong-Geun;Ha, Gyeong-Pyo;Go, Sang-Geun;Lee, Yang-Su;Han, Song-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.570-578
    • /
    • 1997
  • At design stage of new motor or when taking remedial action of old motor, a lot of information can be obtained from thermal parameters analysis. This study focused on the temperature rise of TEFC induction motor with respect to various thermal parameters. Frame heat transfer had the most important effect on coil temperature rise. But those of air gap and rotor fan had no effect. This fact shows fan action is more important than fin action in the case of rotor fan. Coil temperature can be more decreased by cooling near the heat sources than any other parts from the results of thermal conductivity and loss tests. Variation of cooling air flow rate and motor volume effects on coil temperature were also tested. These tests suggest that improvement of cooling fan performance is important in reducing the coil temperature rise. Thermal equivalent program was verified by comparison of some experimental results.

Numerical Study on Surface Air-Oil Heat Exchanger for Aero Gas-Turbine Engine Using One-Dimensional Flow and Thermal Network Model (항공기 가스터빈용 오일쿨러 해석을 위한 1 차원 열유동 네트워크 수치적 모델 개발 및 연구)

  • Kim, Young Jin;Kim, Minsung;Ha, Man Yeong;Min, June Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.915-924
    • /
    • 2014
  • In an aero gas-turbine engine, a surface air-oil heat exchanger (SAOHE) is used to cool the oil system for the gearboxes and electric generators. The SAOHE is installed inside the fan casing of the engine in order to dissipate the heat from the oil system into the bypass duct stream. The purpose of this study was to develop an effective numerical method for designing an SAOHE for an aero gas-turbine engine. A two-dimensional model using a porous medium was developed to evaluate the aero-thermal performance of the fins of the heat exchanger, and a one-dimensional flow and thermal network program was developed to save time and cost in the evaluation of the heat exchanger performance. Using this network program, the pressure drop and heat transfer performance of the heat exchanger were predicted, and the results were compared with two-dimensional computational fluid dynamics results and experiment data for validation.

Prediction of Heating-line Positions for Line Heating Process by Using a Neural Network (신경회로망을 이용한 선상가열공정의 가열선 위치선정에 관한 연구)

  • 손광재;양영수;배강열
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.31-38
    • /
    • 2003
  • Line heating is an effective and economical process for forming flat metal plates into three-dimensional shapes for plating of ships. Because the nature of the line heating process is a transient thermal process, followed by a thermo elastic plastic stress field, predicting deformed shapes of plate is very difficult and complex problem. In this paper, neural network model o3r solving the inverse problem of metal forming is proposed. The backpropagation neural network systems for determining line-heating positions from object shape of plate are reported in this paper. Two cases of the network are constructed-the first case has 18 lines which have different positions and directions and the second case has 10 parallel heating lines. The input data are vertical displacements of plate and the output data are selected heating lines. The train sets of neural network are obtained by using an analytical solution that predicts plate deformations in line heating process. This method shows the feasibility that the neural network can be used to determine the heating-line positions in line heating process.

A thermal stability testing and analysis for a surge protector installed in residential distribution board (주택용 분전반에 설치되는 서지보호기의 열적 안전성 시험 및 분석)

  • Kim, Ju-Chul;Park, Jang-Bum;Ki, Che-Ouk
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.339-341
    • /
    • 2009
  • Surge Protective Device(SPD) is installed by increasing information and communication equipments and home network equipments by individual home, and the amount of SPD used is increasing by revision industry regulations and strengthening equipotential grounding system. Parts of SPD installed in residential distribution board has ZnO varistor, voltage constraint type devices, but it is exposed to Temporary Overvoltage Characteristic. This thesis analyzes products through Thermal Stability test for SPD for general house and suggests the better method. As results of analysis, Gas Discharge Tube(GDT) to cut off from a leakage current and more than two kinds of safety devices to protect Thermal Runaway were needed.

  • PDF

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • Lee, Jae-Ha;Lee, Jin-Hyeon;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2589-2596
    • /
    • 2000
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model, etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcomes limitation of accuracy in the linear regression model or the engineering judgment model. It shows that the fuzzy model has more better performance than linear regression model, though it has less number of thermal variables than the other. The fuzzy model does not need to have complex procedure such like multi-regression and to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Also, the fuzzy model can be applied to any machine, but it delivers greater accuracy and robustness.

Cure Kinetics and Thermal Properties of Epoxy Resin Initiated by Methylanilinium Salts as a Latent Cationic Curing Agent (잠재성 양이온 경화제로서 methylanilinium 염에 의해 개시된 에폭시 수지의 경화 동력학 및 열적 특성)

  • 김택진;박수진;이재락
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.34-37
    • /
    • 2000
  • The effect of novel N-crotyl-N,N-dimethyl-4-methylanilinium hexafluroantimonate (CMH) curing agent on cure behavior and thermal properties of DGEBA epoxy cationic system was investigated. From DSC measurements of DGEBA/CMH system, it was shown that this system exhibits an excellent thermal latent characteristic in a given temperature and reveals complex cure behavior as indicated by multiple exotherms. The conversion and conversion rate of DGEBA/CMH system increased with increasing the concentration of initiator due to high activity of CMH. Viscoelastic properties during gel formation of DGEBA with CMH were investigated by rheological techniques under isothermal condition. The gel time obtained from the modulus crossover. point t(G')=G", was affected by high curing temperature and concentration of CMH, resulting in high degree of network formation in cationic polymerization. The thermal stabilities were discussed in terms of the activation energy for decomposition and thermal factors determined from TGA measurements.ents.

  • PDF

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy using Cationic Initiator (양이온 개시제를 이용한 열경화성 액정 에폭시의 열분해 활성화에너지)

  • Jung, Ye Ji;Hyun, Ha Nuel;Cho, Seung Hyun
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.180-185
    • /
    • 2021
  • Due to the formation of random three dimensional network structure, which cause a lot of scattering of phonons, the thermal conductivity is low when the liquid crystalline epoxy is cured with amine-based curing agent. This problem is solved by using a cationic initiator that can make mesogen groups to be stacked structure. In this experiment, the thermal stability is compared by investigating the activation energy of isothermal decomposition through TGA of an epoxy using an amine-based curing agent and a cationic initiator. As a result, the energy of the activation of the epoxy using a cationic initiator is high. Compared with the previous experiments, the thermal stability is similar to the thermal conductivity.

A study on the relationship between the thermal properties of rock and the enviroment in underground spaces (암반 열물성과 지하공간 환경분석 연구)

  • Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.335-341
    • /
    • 1996
  • This fundamental study analyzes the relationship between rock thermal properties and psychrometric properties in underground space and has a ultimate goal to develope technologies for predicting major environmental variables. The study is divided into 2 subjects (1) developement of a basic model for predicting temperature and humidity, (2) analysis of the validity of the model through application to a local underground storage space for military supplies. The basic model is built for the network of tunnel-shaped underground spaces. The model takes into account rock thermal properties and changes in moisture content in the air due to condensation/evaporation on the rock surface. Using lumped-parameter analytical method, heat flux from or to the surrounding rock is calculated and then the psychrometric properties(air quantity, pressure, temperature, humidity) are estimated through network simulation. The model can be utilized regardless of the tunnel type. The study site is a local storage space built in rock, mainly granite gneiss and quartz-porphyry. It is a U-shaped tunnel, 593.5m long and 6x6.5m wide. Relative humidity inside has to be strictly controlled under 55% to avoid erosion of a certain types of supplies stored in 6 chambers with the capacity of 300~1.000 ton. The thermal conductivity varies between 2.734 and 2.779W/m$^{\circ}C$ and the thermal diffusivity is in the range of 1.119 and $1.152{\times}10^{-6}\;m^2/s$ the specific heat between 910 and $920\;J/kg^{\circ}C$. Relative errors of the predicted values of dry/wet temperature and relative humidity are 0.8~3.0%, 0~7.5% and 0~7.0%, respectively. Apparent errors associated with the rock surface temperature seems to be partly due to the intrinsic limitations in the infrared thermometer used in this study.

  • PDF

Development of a Real-Time Thermal Performance Diagnostic Monitoring System Using Self-Organizing Neural Network for KORI-2 Nuclear Power Unit (자기학습 신경망을 이용한 원자력발전소 고리 2호기 실시간 열성능 진단 시스템 개발)

  • Kang, Hyun-Gook;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.36-43
    • /
    • 1996
  • In this work, a PC-based thermal performance monitoring system is developed for the nuclear power plants. The system performs real-time thermal performance monitoring and diagnosis during plant operation. Specifically, a prototype for the KORI-2 nuclear power unit is developed and examined in this work. The analysis and the fault identification of the thermal cycle of a nuclear power plant is very difficult because the system structure is highly complex and the components are very much inter-related. In this study, some major diagnostic performance parameters are selected in order to represent the thermal cycle effectively and to reduce the computing time. The Fuzzy ARTMAP, a self-organizing neural network, is used to recognize the characteristic pattern change of the performance parameters in abnormal situation. By examination, this algorithm is shown to be able to detect abnormality and to identify the fault component or the change of system operation condition successfully. For the convenience of operators, a graphical user interface is also constructed in this work.

  • PDF