• Title/Summary/Keyword: Thermal Load of Lighting

Search Result 13, Processing Time 0.023 seconds

The Performance of generated Heating Energy from Interior Lighting Fixtures (실내조명의 발열량 예측에 관한 실험 연구)

  • Choi, Jong-seon;Lim, Hong-Soo;Kim, Kyung-Ah;Lee, Keum-hwan;Koo, Jae-Oh;Kim, Gon
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.27-32
    • /
    • 2010
  • Approximately 20 percentage of energy consumptions in buildings is consumed as lighting energy. Thus, most of the corporations of lighting fixture have launched low energy products. However, many researchers focused on the only luminous efficacy for energy conservation and used the evaluating tool of study. This can not gauge the precise cooling load related on generated heat of artificial lighting. In order to assess an effect of the temperature variation of lighting resources, the main purpose of this study is to predict the generated heating energy from lighting by measuring the thermal variation in scale model to reduce external noise. Also this paper used MX100 data logger to record at an interval of 1 minute for 60 minutes for the temperature of interior lightings such as incandescent lamp, fluorescent light, halogen lamp and LED lamp. As a result, LED lamp generated the lowest heat. On the other hand, incandescent lamp did the highest.

An Energy Performance Evaluation of UFAD System under the Various Conditions of Thermal Load (실내 부하조건에 따른 바닥공조 시스템의 에너지 성능 평가)

  • Yoon, Seong-Hoon;Jang, Hyang-In;Kim, Kyung-Ah;Yu, Ki-Hyung;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • The present study has been conducted for evaluating and comparing the performance of the underfloor air distribution system(UFAD) and the ceiling based air distribution system(CBAD) under cooling condition. Simulations and experiments were carried out for verifying the model by TRNSYS program about UFAD and CBAD. The results of simulation for various conditions of thermal load are summarized as followings. UFAD had an advantage for making thermal comfort because of lower temperature of the floor surface. Moreover, UFAD showed lower fan power about 30~50% than CBAD under the same conditions of thermal load. The energy saving rates of UFAD were increased to 17.7% in proportion to the thermal load on unoccupied zone(lighting). Ultimately, additional investigations should be done for analyzing optimized operating conditions of UFAD with considering the thermal performance of building envelop and the thermal load.

The Study on the Cooling Effects of the Atrium Interiors for the Roof Watering System by a Scaled Model (축소모형을 이용한 지붕담수시스템을 활용한 아트리움 실내의 냉각효과에 관한 연구)

  • Chung, Yu Gun
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.51-56
    • /
    • 2009
  • The most important advantages of atrium buildings are to allow the abundant natural lighting and outside views. However, the abundant lighting frequently causes to increase a cooling load in summer. The roof watering systems are useful to reduce the cooling load and save the energy. This study aims to investigate the effects of the roof watering system in atrium through the scaled model experiments. For the study, the 1/20 scaled model was made and tests were performed under the clear sky conditions through August 24 to september 7 in 2008. The model size was $45{\times}45{\times}60(cm)$ and depth of roof water was 3(cm). As results, the thermal effects of two types of atrium(roof opening, and roof and front opening,) were evaluated through the experimental points and conditions. It is expected to use the results for the next research to develop the practical roof watering systems for atrium.

Energy Performance Assessment Study of Prismatic Solar Hybrid Collector System (Prismatic Solar Hybrid Collector 시스템의 에너지 성능 평가에 관한 연구)

  • Park, J.U.;Kim, K.S.;Lee, E.J.;Chung, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.51-58
    • /
    • 2003
  • PSHC(Prismatic Solar Hybrid Collector) is a passive solar system composed of prismatic acrly glazing, glazing and ventilating fan. This PSHC system is applied to effectively reduce heating ventilation load as well as lighting load. But so far no method appraising thermal performance of this PSHC system has been developed yet. To assess thermal performance of the PSHC system, a prototype PSHC experimental facility and TRNSYS subroutine type-205 model have been developed in Korea Institute of Energy Research (KIER). The results indicated that l)TRNSYS empirical model of PSHC has been properly modeled with actual performance data, 2)a more reliable source of weather data such as NASA and KIER weather station have been also obtained, and therefore, 3)the annual energy performance of PSHC could be assessed based on this proposed TRNSYS model.

Evaluation of Indoor Thermal Environment according to Type and Color of Blinds Installed in the Classroom (교실에 설치된 블라인드의 유형과 색상에 따른 실내 온열환경 평가)

  • Kwon, Daehyeok;Lee, Jae-Ro;Oh, Juseok;Wi, Seunghwan;Kim, Sumin
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.224-232
    • /
    • 2017
  • Building energy saving have been put effort in a long time since buildings consume about 40.6% of total energy use, where heating, cooling and electrical lighting requirement results in energy consumption of building significantly. The window is an important part of building envelope, it usually brings a certain heat load from solar radiation while it allows light passing through, and properly leads to overheating in summer, hence the cooling load increase sand cause of thermal uncomfortable factor. The purpose of this study was to evaluate internal shade performance according to color and materials. There is growing interest in improving the sense of comfort among students who spend most of their time in the classroom. The study examined thermal environment and light environmental performance according to the color and materials of internal blinds to the school classroom. The results of this study were as follows; Among wooden blinds, aluminium blinds, and polyester blinds, the aluminium blinds were most excellent. In addition, among white blinds, light brown blinds, dark brown blinds, the light brown were most excellent.

Development and comparative analysis of slat angle control algorithm of venetian blind according to window-to-wall ratio and zone orientation (창면적비 및 향변화에 따른 슬랫형 블라인드의 최적각도 제어 알고리즘 산출 및 비교분석)

  • Kwon, Hyuk-Ju;Lee, Keum-Ho;Lee, Kwang Ho
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.75-81
    • /
    • 2017
  • Purpose: Most contemporary office buildings supply external views, a sense of openness and a sense of time to their occupants by adopting the curtain walls, which are equipped with an outer cover having large window area. As a result, the amount of radiation increases, adversely affecting cooling load during the summer in office buildings. Although solar radiation decreases heating load and reduces energy costs during the winter period, due to the characteristics of offices where occupants work largely during daytime, the cooling load is important compared to the heating. Therefore, diverse measures to resolve those trade-offs and annual energy cost have been investigated. Method: In this study, the annual thermal load was comparatively analyzed according to the slat angle of the venetian blind along with lighting control technique. Result: After selecting effective conditions, in order to resolve such issues, this study established automated control strategies of slat angle depending on the window-to-wall ratio and zone orientation, so that the findings of this study can be effectively generalized to other circumstances.

A Study on the Application Effect of DSSC BIPV Window System in Office Building Considering Cooling.Heating.Lighting Energy (냉.난방 및 조명에너지를 통합 고려한 DSSC BIPV창호의 사무소건물 적용 효과 연구)

  • Sim, Se-Ra;Yoon, Jong-Ho;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.67-72
    • /
    • 2011
  • The aim of this study is to evaluate how much would the building energy consumption be saved by applying DSSC BIPV window which is possible to control the transmittance and express the color in the office building. For this, physical characteristics such as transmittance and reflectance, U-factor of DSSC areanalyzed and an annual energy consumption that is connected to dimming control is calculated when DSSC BIPV window is applied by alternate clear window system. As a result, It is possible to reduce the anannual energy consumption as much as4.1% by just change the clear double window system to DSSC BIPV double window system because the major factor to reduce energy consumption in the office that has much cooling load than other building is SHGC. When the thermal insulation properties of DSSC BIPV window with low-e coating and making triple window are improved, energy saving ratio is about 9%. Plus, energy saving ratio of 25~28% in lighting energy consumption is possible when the dimming control system with DSSC BIPV window is adopt.

A Study on the Development of Building Envelope Elements for Energy Reduction in Multi- Rise Residential Buildings

  • Lee, Myung Sik
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • It is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to find an optimal thermal transmittance (U-values) for building envelope elements for low energy multi-rise residential buildings in the early design phase in Korea. The study found that using small U-values of $0.15w/m^2K$ for exterior walls, ceilings and floors and $1.0w/m^2K$ for south and north facing windows has resulted in energy reduction of 22.1%-59.4% in the south facing rooms and 43%-77.6% of the north facing rooms. It has also found the energy load reduction potential of using small U-values are higher on the north facing rooms. The findings of this study can be suggested to be used as a baseline case for low energy consumption studies. It can also be used to determine appropriate envelope materials and insulation values.

Evaluation of Lateral Load Resistance and Heating/Cooling/Lighting Energy Performance of a Post-disaster Refugees Housing Using Lightweight composite Panels (경량 복합패널을 활용한 구호주거의 횡하중 저항성능 및 냉난방조명 에너지성능 평가)

  • Hwang, Moon-Young;Lee, Byung-Yun;Kang, Su-Min;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.252-262
    • /
    • 2019
  • Following the earthquake in Gyeongju (2016) and Pohang (2017), South Korea is no longer a safe place for earthquakes. Accordingly, the need for shelters suitable for disaster environments is increasing. In this study, a lightweight composite panel was used to produce post-disaster housing for refugees to compensate for the disadvantages of existing evacuation facilities. For this purpose, an evaluation of structural performance and thermal environment for post-disaster housing for refugees composed of lightweight composite panels was performed. To assess the structural performance, a lateral loading test was conducted on a system made of lightweight composite panels. The specimens consisted of two types, which differed according to the bonding method, as a variable. In addition, the seismic and wind loads were calculated in accordance with KBC 2016 and compared with the experimental results. Regarding the energy performance, optimization of south-facing window planning and window-wall ratio and solar heat gain coefficient were analyzed to minimize heating, cooling, and lighting energy. As a result, the specimens composed of lightweight composite panels will perform sufficiently safely for lateral loads and the optimized window planning will lead to a low-energy operation.

Annual Energy Performance Evaluation of Zero Energy House Using Metering Data (실측데이터를 이용한 에너지제로주택의 연간 에너지성능평가)

  • Lim, Hee-Won;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Purpose: In this study, we evaluate the annual energy performance of the detached house which was designed with the aim of zero energy. Method: The experimental house which was constructed in Gonju Chungnam in 2013, is the single family detached house of light weight wood frame with $100m^2$ of heating area. Thermal transmittance of roof (by ISO 10211) and building external walls are designed as $0.10W/m^2K$ and $0.14W/m^2$ respectively and low-e coating vacuum window glazing with PVC frame was installed. Also grid connected PV system and natural-circulation solar water heater was applied and 6kWp capacity of photovoltaic module was installed in pitched roof and $5m^2$ of solar collector in vertical wall facing the south. We analyzed the 2014 annual data of the detached house in which residents were actually living, measured though web-based remote monitoring system. Result: First, as a result, total annual energy consumption and energy production (PV generation and solar hot water) are 7,919kWh and 7,689kWh respectively and the rate of energy independence is 97.1% which is almost close to the zero energy. Second, plug load and hot water of energy consumption by category showed the highest numbers each with 33% and 31%, with following space heating 24%, electric cooker 8%, lighting 3% in order. Hot water supply is relatively higher than space heating because high insulation makes it decreased.