• Title/Summary/Keyword: Thermal Input

Search Result 740, Processing Time 0.025 seconds

A Study on temperature behavior of pulsating heat pipe with different diameter in evaporator (증발부 내경 변화에 따른 진동형 히트파이프의 온도 거동에 관한 연구)

  • Kim, Jihoon;Park, Chulwoo;Shah, Syed Abdullah;Kim, Daejoong
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.10-18
    • /
    • 2019
  • In this study, the temperature behavior of Pulsating Heat Pipe (PHP) according to the diameter change were studied by limiting the diameter change to only the evaporator. To investigate operation of PHP in various heat input, heat input power was increased from 10 to 120 W. The results show operation can be divided into 3 regimes by temperature behavior. Thermal resistance was increased before start-up and decreased with increasing heat input. At 110 W heat input, thermal conductivity of 2 mm PHP was 8 .times higher compare to thermal conductivity of copper. Further, to investigate details of temperature behavior in higher heat input, FFT analysis was conducted. Based on the results, when the deviation of peak frequency in each section is lowest, the thermal resistance has lowest value.

Nonlinear Optimal Control of an Input-Constrained and Enclosed Thermal Processing System

  • Gwak, Kwan-Woong;Masada, Glenn Y.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • Temperature control of an enclosed thermal system which has many applications including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In this paper, a constrained nonlinear optimal control design is developed, which accommodates input constraints using the linear algebraic equivalence of the nonlinear controllers, for the temperature control of an enclosed thermal process. First, it will be shown that design of nonlinear controllers is equivalent to solving a set of linear algebraic equations-the linear algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear optimal controller is designed based on that LAENC using the constrained linear least squares method. Through numerical simulations, it is demonstrated that the proposed controller achieves the equivalent performances to the classical nonlinear controllers with less total energy consumption. Moreover, it generates the practical control solution, in other words, control solutions do not violate the input-constraints.

Modeling of Welding Heat Input for Residual Stress Analysis (용접 잔류응력 해석을 위한 Heat Input Model 개발)

  • 심용래;이성근
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.34-47
    • /
    • 1993
  • Finite element models were developed for thermal and residual stress analysis for the specific welding problems. They were used to evaluate the effectiveness of the various welding heat input models, such as ramp heat input function and lumped pass models. Through the parametric studies, thermal-mechanical modeling sensitivity to the ramp function and lumping techniques was determined by comparing the predicted results with experimental data. The kinetics for residual stress formation during welding can be developed by iteration of various proposed mechanisms in the parametric study. A ramp heat input function was developed to gradually apply the heat flux with variable amplitude to the model. This model was used to avoid numerical convergence problems due to an instantaneous increase in temperature near the fusion zone. Additionally, it enables the model to include the effect of a moving arc in a two-dimensional plane. The ramp function takes into account the variation in the out of plane energy flow in a 2-D model as the arc approaches, travels across, and departs from each plane under investigation. A lumped pass model was developed to reduce the computation cost in the analysis of multipass welds. Several weld passes were assumed as one lumped pass in this model. Recommendations were provided about ramp lumping techniques and the optimum number of weld passes that can be combined into a single thermal input.

  • PDF

Low-Temperature Thermal Decomposition of Industrial N-Hexane and Benzene Vapors (산업 발생 노르말헥산과 벤젠 증기의 저온 분해)

  • Jo Wan-Kuen;Lee Joon-Yeob;Kang Jung-Hwan;Shin Seung-Ho;Kwon Ki-Dong;Kim Mo-Geun
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.635-642
    • /
    • 2006
  • Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the re- action temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed, The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.

Thermal Load Calculations on Stud-Frame Walls by Response Coefficient Method (응답계수(應答係數)를 이용(利用)한 건물벽에서의 열부하(熱負荷) 계산(計算))

  • Hwang, Y.K.;Pak, E.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.357-368
    • /
    • 1988
  • An application of thermal response coefficient method for obtaining thermal load on stud-frame walls in a typical house is presented. A set of stud-frame walls is two-dimensional heat conduction transients with composite structure. The ambient temperature on the right-hand face of the stud-frame walls is a typical day-cycle input and the room temperature on the left-hand face is a constant input. The desired output is thermal load at the left-hand face. The time-dependent ambient temperature is approximated by a continuous, piecewise-linear function each having one hour interval. The conduction problem is spatially discretized as 8 computer modelings by finite elements to obtain thermal response coefficients. The discretization and round-off errors can be neglected in the range of adequate number of nodes. A 60-node discretization is recommended as the optimum model among 8 computer modelings. Several sets of response coefficients of the stud-frame walls are generated by which the rate of heat transfer through the walls or some temperature in the walls can be calculated for different input histories.

  • PDF

A Study of the Effect of Grouting Region on the Solution of Line Source Analysis (그라우팅 영역이 선형열원 해석에 미치는 영향에 관한 연구)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.143-150
    • /
    • 2010
  • Line source method of borehole system assumes the entire surrounding medium is uniform. However, thermal properties of grouting region are considerably different from those of surrounding soil. In this study we investigate the effect of grouting materials on the solution of line source method with the aid of numerical analysis. This numerical model generates the temperature of borehole fluid with which line source solution can be obtained. Then this solution can be compared with input condition of numerical model. The results of this comparison show that thermal conductivity and borehole thermal resistance of line source solution are approximately 86% and 91% of the input condition of numerical model. Chart method is developed in this study to find the numerical input conditions (thermal conductivity and borehole thermal resistance) from the line source solution. Thermal response test of test borehole is conducted, the results of which are approximately consistent with the Chart method. Thermal property changes of grouting materials on the line source solution are also examined.

Cooling effect of an electronic module with a variation of the inlet air temperature (유입공기의 온도변화가 전자모듈의 냉각에 미치는 영향)

  • 이진호;조성훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.264-273
    • /
    • 2001
  • The conjugate heat transfer from a protruding module in a horizontal channel with a variation of air temperature is experimentally investigated. It is an aim of this study is to estimate temperature difference between a module and air. This study is performed with a variation of parameters that are air temperatures($T_i,=25^{\circ}C{\sim}55^{\circ}C),$ thermal resistance($R_c=158 K/W),$ air velocities ( 4V_i=0.1$ m/s~l.5 m/s ), and input power (Q=3 W, 7 W ). The results show that as the thermal resistance increases, the effect of air temperatures are decreased. And input power was most effective parameter on the temperature difference between a module and air.

  • PDF

Control characteristics of a refrigerant compressor test facility (냉매압축기 성능시험장치의 제어 특성)

  • Lee, J. Y.;Lee, D. Y.;Kim, K. H.;Nam, P. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.46-51
    • /
    • 1999
  • This paper describes the control charcteristics of thermal/flow systems. In thermal/flow systems, the transport lag plays as a dead time causing a deterioration of the controllability. Besides this, such many parameters including the temperature, pressure, and flow rate affect the system response that a control scheme which can deal with multi-input is required. Particularly in a refrigerant compressor test facility, the evaporator and condenser interact each other so that the change in the evaporator pressure cause the condenser pressure to change or vice versa. Therefore, to control the evaporator pressure, not only the cooling water flow rate in the evaporator but also the coolant flow rate in the condenser is considered. Meanwhile, the conventional PID controllers, which is suitable for a single input system, shows a large overshoot for a disturbance input. In this work, the predictive control scheme is introduced and its applicability is discussed for thermal/flow systems.

  • PDF

The effect of inlet air temperature for the cooling of the military electronic chip on the thermal conductive board (공기온도가 열전도성 기판 위에 탑재된 군용 전자칩 냉각에 미치는 영향)

  • 이진호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.195-206
    • /
    • 2002
  • The conjugate heat transfer from the simulated module in a horizontal channel with the variation of inlet air temperature is experimentally investigated. The aim of this study is to estimate temperature difference between a module and inlet air. This study is performed with the variation of parameters that are inlet air temperature(Ti=25~$55^{\circ}C), thermal resistance( $R_c$=0.05, 4.11, 158 K/W), inlet air velocity(Vi=0.1~1.5m/s), and input power(Q=3, 7 W). The results show that the effect of inlet air temperature is little, at the case of using conductive board. And input power was most effective parameter on the temperature difference between module and Inlet air.

System-Level Saturation Modeling of Thermal Imager (열상장비의 포화 현상에 대한 시스템 모델링)

  • Han, Seungoh;Park, Seung-Man
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.698-702
    • /
    • 2016
  • Thermal imager is now regarded as one of the key observation devices for ISR activities and getting important more and more. As other detectors, however, the thermal detectors also have maximum input and therefore they will be saturated if the input IR energy exceeds the allowed range. The saturation in the thermal detector makes it impossible to distinguish the target from background, as a result, the thermal imager does not perform its own mission anymore. In order to get an insight related with the image saturation, this paper develops a saturation model for a thermal imaging system, not a thermal detector. The proposed modeling starts from analyzing the specification of a thermal imager. Coupled with the characteristic parameters of the object, the saturation model can be used to predict the distance on which the detector is saturated. The proposed saturation model prove its validity by applying it for the case of observing a flash-bang.