• Title/Summary/Keyword: Thermal Infrared

Search Result 1,306, Processing Time 0.03 seconds

Effect of $MnO_2$ Additives on the Thermal Properties of Infrared Radiator of Cordierite System Fabricated by Slurry Casting Method (주입성형법으로 제조된 Cordierite계 적외선 방사체의 열적특성에 미치는 $MnO_2$의 영향)

  • 신용덕
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.769-776
    • /
    • 1995
  • Infrared radiators of a cordierite system [cordierite (2MgO.2Al2O3.5SiO2)+30wt% clay+X wt% MnO2 (X=0, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5)] were manufactured by a slurry casting method. Thermal and physical properties of these infrared radiators were studied by the measurement of spectra emissivity, thermal expansion coefficient and apparent density, SEM and EPMA analyses were also carried out. The thermal expansion coefficient and apparent density were decreased with increasing amouonts of MnO2 additives. On the other hand, the spectral emissivity was increased in the wavelength below 4.5${\mu}{\textrm}{m}$. Also, infrared radiators of the cordierite system, of which the spectral emisivity was 0.8, could be attainable in the wavelength above 4.5${\mu}{\textrm}{m}$. The infrared radiator of the cordierite system with 2.0wt% MnO2, of which the spectral emissivity was approximately 1.0, could be attainable in the wavelength between 4.5${\mu}{\textrm}{m}$ and 8${\mu}{\textrm}{m}$. The spectral emissivity of the specimen containing 2.0wt% MnO2 was higher than others in the wavelength between 8${\mu}{\textrm}{m}$ and 14${\mu}{\textrm}{m}$.

  • PDF

Drone Infrared Thermography Method for Leakage Inspection of Reservoir Embankment (드론 열화상활용 저수지 제체 누수탐사)

  • Lee, Joon Gu;Ryu, Yong Chul;Kim, Young Hwa;Choi, Won;Kim, Han Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.21-31
    • /
    • 2018
  • The result of examination of diagnostic method, which is composed of a combination of a thermal camera and a drone that visually shows the temperature of the object by detecting the infrared rays, for detecting the leakage of earth dam was driven in this research. The drone infrared thermography method was suggested to precise safety diagnosis through direct comparing the two method results of electrical resistivity survey and thermal image survey. The important advantage of the thermal leakage detection method was the simplicity of the application, the quickness of the results, and the effectiveness of the work in combination with the existing diagnosis method.

Search of submarine discharge locations with multi-temporal thermal infrared images and ground radar surveys

  • Onishi K.;Sairaiji M.;Rokugawa S.;Tokunaga T.;Sakuno Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.685-688
    • /
    • 2004
  • Fresh water discharge from the sea floor strongly affects a coastal ecology and the diffusion of contaminants. Much fresh water discharge has been found in the edge of Kurobe alluvial fan, in which annual rainfall is over 4000mm and there is abundant groundwater. However, it is difficult to find the groundwater discharge, thus the search of possible areas with some remote sensing tools is required. Because the temperature of the discharge point is relatively low compared with the surrounding sea water surfaces, there is a possibility to detect the area as an irregular zone of thermal infrared images. Two anomalous temperature zones, which have no surface streams from rivers, are detected by ASTER thermal-infrared images. One of them was verified as the groundwater discharge point by dives. In addition, the distribution of water table under the land side of the two areas is also detected as irregular zones by a ground-penetrating radar

  • PDF

Development of a Diagnostic Technique of the Historic Structures Using a Thermal Infrared Camera

  • Nakabeppu, Jiro;Maeda, Atsushi;Gotoh, Keinosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.493-495
    • /
    • 2003
  • The establishment of the investigation and the maintenance technique is required for preservation of old structures in Japan. This study attempts to diagnose the deterioration status of the historic structures using the thermal infrared camera. In some structures, the difference of the spatio-temporal change was observed in the surface temperature. For example, the cold joint of concrete was examined using this method effectively. As a result of this study, we have found useful guidelines in developing methodology to conduct diagnosis of historic buildings by using thermal infrared camera.

  • PDF

A study on MicroCantilever Deflection for the Infrared Image Sensor using Bimetal Structure (바이메탈형 적외선 이미지 센서 제작과 칸틸레버 변위에 관한 고찰)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.34-38
    • /
    • 2005
  • This is a widespread requirement for low cost lightweight thermal imaging sensors for both military and civilian applications. Today, a large number of uncooled infrared detector developments are under progress due to the availability of silicon technology that enables realization of low cost IR sensor. System prices are continuing to drop, and swelling production volume will soon drive process substantially lower. The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple Structurefor developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. This paper reports a micromachined silicon uncooled thermal imager intended for applications in automated process control. This paper presents the design, fabrication, and the behavior of cantilever for thermomechanical sensing.

  • PDF

Facial Region Extraction in an Infrared Image (적외선 영상에서의 얼굴 영역 자동 추적)

  • Shin, S.W.;Kim, K.S.;Yoon, T.H.;Han, M.H.;Kim, I.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.57-59
    • /
    • 2005
  • In our study, the automatic tracking algorithm of a human face is proposed by utilizing the thermal properties and 2nd momented geometrical feature of an infrared image. First, the facial candidates are estimated by restricting the certain range of thermal values, and the spurious blobs cleaning algorithm is applied to track the refined facial region in an infrared image.

  • PDF

The Comparison of Thermal Infrared Satellite Observation for Plume Assessment of Thermal Discharge (온배수 확산 평가를 위한 열적외선 위성관측 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • To examine the effect of thermal discharge from nuclear power plants, Sea Surface Temperature (SST) is one of the most important variables measured by satellite remote sensing. However, the study was not much comparison of field data and satellite SST from operational Landsat 8 Thermal Infrared Sensor(TIRS) and Landsat 7 ETM+. The Landsat 8 TIRS have 2 spilt Thermal Infrared channels but ETM+ uses one channel for extracting of SST. In spite of that this research carried out that Landsat 7 ETM+ have more profitable for correction of SST than Landsat 8 TIRS. The used 15 Landsat 7 and 8 Thermal Infrared data of path/row 114-36 were processed by SST algorithm of ENVI and IDL. The in-situ SST data from KHOA(Korea Hydrographic and Oceanographic Administration) compared with satellite SST and the accuracy of extracted SST were assessed by each field sites in-situ point data with time series satellite SST.

Analysis of Visible Light Communication Module Degraded by High Dose-Rate Gamma Irradiation using Thermal Infrared Image (적외선 열영상을 이용한 가시광 통신모듈의 고선량 감마선조사에 따른 열화 분석)

  • Cho, Jai-Wan;Hong, Seok-Boong;Koo, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1203-1209
    • /
    • 2011
  • In this paper, the degradation evaluation method of VLC (Visible Light Communication) wireless module after high dose rate gamma-ray irradiation using the thermal infrared camera is proposed. First, the heating characteristics of the active devices embedded in the VLC wireless module during the condition of normal operation is monitored by thermal infrared camera. By the image processing technique, the trends of the intensity of the heat emitted by the active devices are calculated and stored. The feature of the blob area including the area of the active devices in the thermal infrared image is extracted and stored. The feature used in this paper is the mean value of the gray levels in the blob area. The same VLC module has been gamma irradiated at the dose rate of about 4.0 kGy/h during 72 hours up to a total dose of 288 kGy. And then, the heating characteristics of the active devices embedded in the VLC wireless module after high dose gamma ray irradiation is observed by thermal infrared camera. The high dose gamma-ray induced degradation of the active devices embedded in the VLC module was evaluated by comparing the mean value of the blob area to the one of the same blob area of the VLC module before the gamma ray irradiation.

Automatic Photovoltaic Panel Area Extraction from UAV Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.559-568
    • /
    • 2016
  • For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, the technologies developed until now have had the shortcomings of having to analyze the images manually to detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with the proposed algorithm.

Effects of Reinforcing Fillers on Far-infrared Vulcanization Characteristics of EPDM (보강제에 따른 EPDM의 원적외선 가교 특성 연구)

  • Kim, J.S.;Lee, J.H.;Jung, W.S.;Bae, J.W.;Park, H.C.;Kang, D.P.
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • EPDM(Ethylene-propylene-diene-terpolymer) compound reinforced with carbon black having four different particle size, acetylene black(thermal conductivity carbon black), and silica were manufactured by internal mix and open mill. To investigate the effect of particle size of filler and filler type on far-infrared vulcanization, intermal temperature of compound, degree of curing, infrared spectroscopy, and thermal analysis were measured. The thermal conductivity of far-infrared vulcanized EPDM compound increased with increasing particle size of carbon filler, but hot air vulcanized EPDM compound is not affected by particle size. The thermal conductivity was increased in the order of carbon black < silica < acetylene black(thermal conductivity carbon black).