• Title/Summary/Keyword: Thermal Field Variable

Search Result 74, Processing Time 0.026 seconds

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.

Temperature Field and Thermal Stress Simulation of Solid Brake Disc Based on Three-dimensional Model (3차원 브레이크 디스크 모델의 온도 분포와 열응력 시뮬레이션에 관한 연구)

  • Hwang, Pyung;Seo, Hee-Chang;Wu, Xuan
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The brake system is an important part of the automobile safety system. The disc brake system is divided into two parts: a rotating axi-symmetrical disc, and the stationary pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperatures during the braking process. The frictional heat source (the pads) is moving on the disc and the location is time-dependent. Our study applies a moving heat source, which is defined by the time and space variable on the frictional surface, in order to simulate the frictional heat behavior accurately during the braking process. The object of the present work is the determination of the temperature distribution and thermal stress in the solid disc by non-axisymmetric 3D modeling for repeated braking.

Influence of thermal radiation and magnetohydrodynamic on the laminar flow: Williamson fluid for velocity profile

  • Muzamal Hussain;Humaira Sharif;Mohammad Amien Khadimallah;Hamdi Ayed;Abir Mouldi;Muhammad Naeem Mohsin;Sajjad Hussain;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.427-434
    • /
    • 2024
  • Latest advancement in field of fluid dynamics has taken nanofluid under consideration which shows large thermal conductance and enlarges property of heat transformation in fluids. Motivated by this, the key aim of the current investigation scrutinizes the influence of thermal radiation and magnetohydrodynamic on the laminar flow of an incompressible two-dimensional Williamson nanofluid over an inclined surface in the presence of motile microorganism. In addition, the impact of heat absorption/generation and Arrhenius activation energy is also examined. A mathematical modeled is developed which stimulate the physical flow problem. By using the compatible similarities, we transfer the governing PDEs into ODEs. The analytic approach based on Homotopy analysis method is introduced to impose the analytic solution by using Mathematica software. The impacts of distinct pertinent variable on velocity profiles are investigated through graphs.

Energy Performance Evaluation of VAV System through Various Operating Strategies in Office Buildings (VAV 시스템의 현장 운전방식에 따른 에너지 성능평가)

  • 서종욱;허정호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.184-193
    • /
    • 2004
  • The purpose of this study is to evaluate the performance of various control strategies in commercial buildings which have been operated by the variable air volume (VAV) system. Two buildings in Seoul were chosen for the field study. The one (D building) combined by LonWorks has the constant airflow of supply fan and the proportional control of VAV units (damper type). The other (S building) combined by DDC has the PI control mode of the supply fan and the floating control of VAV units (venturi type). In estimating thermal comfort and energy performance through control modes of PI, PID, and CAV in the supply fan, we could identify several energy efficient operating control strategies for the VAV system.

Multi-objective Topology Optimization of Magneto-Thermal Problem considering Heat Flow Rate (열 유입률을 고려한 자계-열계 다목적 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung;Moon, Hee-Gon;Hameyer, Kay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.138-139
    • /
    • 2007
  • This research provides machine designers with some intuition to consider both, magnetic and heat transfer effects. A topological multi-objective function includes magnetic energy and heat inflow rate to the system, which equals to the total heat dissipation by conduction and convection. For the thermal field regarding the heat inflow, introduced as a reaction force, topology design sensitivity is derived by employing discrete equations. The adjoint variable method is used to avoid numerous sensitivity evaluations. As a numerical example, a C-core design excited by winding current demonstrates the strength of the multi-physical approach.

  • PDF

A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer

  • Ezzat, Magdy A.;El-Bary, Alaa A.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.177-186
    • /
    • 2017
  • In this work, the model of magneto-thermoelasticity based on memory-dependent derivative (MDD) is applied to a one-dimensional thermal shock problem for a functionally graded half-space whose surface is assumed to be traction free and subjected to an arbitrary thermal loading. The $Lam{\acute{e}}^{\prime}s$ modulii are taken as functions of the vertical distance from the surface of thermoelastic perfect conducting medium in the presence of a uniform magnetic field. Laplace transform and the perturbation techniques are used to derive the solution in the Laplace transform domain. A numerical method is employed for the inversion of the Laplace transforms. The effects of the time-delay on the temperature, stress and displacement distribution for different linear forms of Kernel functions are discussed. Numerical results are represented graphically and discussed.

Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package (이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계)

  • Nam, Hyun-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

Characteristics of Thermal Coefficient of Fiber Bragg Grating for Temperature Measurement (온도 측정을 위한 광섬유 브래그 격자 센서의 온도 계수 특성 평가)

  • Kim, Heon-Young;Kang, Donghoon;Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.999-1005
    • /
    • 2013
  • A fiber Bragg grating sensor is considered a smart sensor that shows outstanding performance in the field of structural health monitoring (SHM). It has a powerful advantage, especially that of multiplexing, which enables several parameters to be sensed at multiple points by using a single optical fiber line. Among several parameters, the thermal expansion coefficient and thermo-optic coefficient are required to measure temperature. In previous studies, these were considered constant variables. This study shows that two parameters vary with temperature and newly proposes a temperature function for these two parameters. Specifically, these two parameters were defined as a single variable, and then, it was experimentally verified that this variable is a function of temperature. Finally, it was shown that temperature from RT to $100^{\circ}C$ was precisely measured by using the temperature function that was defined through the experiment.

The Effects of Urban Forest on Summer Air Temperature in Seoul, Korea (도시림의 여름 대기온도 저감효과 - 서울시를 대상으로 -)

  • 조용현;신수영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.28-36
    • /
    • 2002
  • The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the Oafnc facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperahne, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field swey of summer air temperature be Performed for the vadidation of the models. The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the traffic facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperature, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field survey of summer air temperature be Performed for the vadidation of the models.