• Title/Summary/Keyword: Thermal Field Variable

Search Result 73, Processing Time 0.025 seconds

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (I) (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (1))

  • 김경천;정양범;김상기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.690-700
    • /
    • 1994
  • The effects of thermal stratification on the flow of a stratified fluid past a circular cylinder were examined in a wind tunnel. In order to produce strong thermal stratifications, a compact heat exchanger type variable electric heater is employed. Linear temperature gradient of up to $250^{\circ}C/m$ can be well sustained. The velocity and temperature profiles in the cylinder wake with a strong thermal gradient of $200^{\circ}C/m$ were measured and the smoke wire flow visualization method was used to investigate the wake characteristics. It is found that the temperature field effects as an active contaminant, so that the mean velocity and temperature profiles can not sustain their symmetricity about the wake centerline when such a strong thermal gradient is superimposed. It is evident that the turbulent mixing in the upper half section is stronger than that of the lower half of the wake in a stably stratified flow.

Reliability analysis test of high brightness micro optical component and module (고휘도 마이크로 광부품 / 모듈의 신뢰성 분석 시험)

  • Lee N.K.;Lee H.J.;Choi S.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.535-536
    • /
    • 2006
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, reliability data such as mechanical, optical, thermal property, etc is the basic property. In this paper, it is measured that is material properties of main BLU(Back Light Unit) components in LCD(Liquid Crystal Display). The pattern shape of prism sheet, diffuser film and reflective plate are measured by variable 3D scanning equipments. It is researched which is the method to measure an optimal 3D pattern shape in each components.

  • PDF

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Characteristics Evaluation of Spindle Thermal Displacement with kinds of Lubrication Oil (윤활유 종류에 따른 주축 열변위의 특성 평가)

  • 강순준;이갑조;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.93-98
    • /
    • 2003
  • High speed precision machines have been introduced to the CNC industry in order to improve productivity, shorten the appointed date of delivery and reduce the prime cost. High speed machines have more functions then general machines, and they were proved in performance. The production and sales of the high speed machines have been increased not only in domestic market but also all over the world. Accordingly, machines are faster, there are lots of problems to be solved. One of the most difficult problems is the thermal displacement on the main spindle due to generated heat while the spindle is rotated in high speed. Since the thermal displacement directly effects the quality of the machined parts, utmost efforts to minimize the thermal displacement have to be given from the beginning of designing machines. In practice, variety of methods are attempted and practiced to minimize the thermal displacement such as design of symmetrical frame, adoption of high speed bearings, application of compensation system using non-contact sensor and use of forced circulating lubrication system with oil cooler. Even if these variable methods have been practically used in the industrial field, generated heat has not been Perfectly Prevented lienee, in this paper, the characteristics of thermal displacement were investigated when several kinds of oil were tested for a high speed machine with forced circulating lubrication system within the same atmosphere and under the same conditions.

  • PDF

Characteristics Evaluation of Spindle Thermal Displacement with kinds of Lubrication Oil (윤활유 종류에 따른 주축 열변위의 특성 평가)

  • 강순준;이갑조;김종관
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • High speed precision machines have been introduced to the CNC industry in order to improve productivity, shorten the appointed date of delivery and reduce the prime cost. High speed machines have more functions then general machines, and they were proved in performance. The production and sales of the high speed machines have been increased not only in domestic market but also all over the world. Accordingly, machines are faster, there are lots of problems to be solved. One of the most difficult problems is the thermal displacement on the main spindle due to generated heat while the spindle is rotated in high speed. Since the thermal displacement directly effects the quality of the machined parts, utmost efforts to minimize the thermal displacement have to be given from the beginning of designing machines. In practice, variety of methods are attempted and practiced to minimize the thermal displacement such as design of symmetrical frame, adoption of high speed bearings, application of compensation system using non-contact sensor and use of forced circulating lubrication system with oil cooler. Even if these variable methods have been practically used in the industrial field, generated heat has not been perfectly prevented. Hence, in this paper, the characteristics of thermal displacement were investigated when several kinds of oil were tested for a high speed machine with forced circulating lubrication system within the same atmosphere and under the same conditions.

INTRA-NIGHT OPTICAL VARIABILITY OF ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD WITH THE KMTNET

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Choi, Changsu;Kim, Dohyeong;Jun, Hyunsung D.;Lee, Joon Hyeop;Mezcua, Mar
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.4
    • /
    • pp.89-110
    • /
    • 2018
  • Active Galactic Nucleus (AGN) variability can be used to study the physics of the region in the vicinity of the central black hole. In this paper, we investigated intra-night optical variability of AGN in the COSMOS field in order to understand the AGN instability at the smallest scale. Observations were performed using the KMTNet on three separate nights for 2.5 to 5 hours at a cadence of 20 to 30 min. We find that the observation enables the detection of short-term variability as small as ~ 0.02 and 0.1 mag for R ~ 18 and 20 mag sources, respectively. Using four selection methods (X-rays, mid-infrared, radio, and matching with SDSS quasars), 394 AGN are detected in the $4deg^2$ field of view. After differential photometry and ${\chi}^2$-test, we classify intra-night variable AGN. The fraction of variable AGN (0-8%) is statistically consistent with a null result. Eight out of 394 AGN are found to be intra-night variable in two filters or two nights with a variability level of 0.1 mag, suggesting that they are strong candidates for intra-night variable AGN. Still they represent a small population (2%). There is no sub-category of AGN that shows a statistically significant intra-night variability.

A Fundamental Study on the Waste Polyethylene Chips Mixed with Soil (폐비닐 골재 혼합토의 기본 성질에 관한 연구)

  • 김영진;김현민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.548-555
    • /
    • 2000
  • It was investigated whether the waste polyethylene chips can be recycled as construction materials in geotechnical engineering field. The standard Proctor test, the hydraulic conductivity test, the large box direct shear test, the thermal conductivity test, the frost heaving test and the time domain reflectometry test were performed on weathered granite soil mixed with variable amount of the waste polyethylene chips. The experimental results showed that the hydraulic conductivity and the shear strength of weathered granite soil increase with increasing the amount of the waste polyethylene chips. On the other hand, the thermal conductivity, the amount of frost heaving and the unfrozen water contents of weathered granite soil decrease with increasing the amount of the waste polyethylene chips.

  • PDF

Topology Optimization of Magneto-thermal Systems Considering Eddy Current as Joule Heat (와전류를 열원으로 고려한 자계-열계 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung;Hameyer, Kay
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.651-652
    • /
    • 2006
  • This research presents a topology optimization for manipulating the main heat flow in coupled magneto-thermal systems. The heat generated by eddy currents is considered in the design domain assuming an adiabatic boundary. For a practical optimization, the convection condition is considered in the topological process of the thermal field. Topology design sensitivity is derived by employing the discrete system equations combined with the adjoint variable method. As numerical examples, a simple iron and a C-core design heated-up by eddy currents demonstrate the strength of the proposed approach to solve the coupled problem.

  • PDF

Numerical Study on Human Model's Shape and Grid Dependency for Indoor Thermal Comfort Evaluation (실내 온열쾌적성 평가를 위한 인체 모델링 및 격자특성에 대한 수치해석적 연구)

  • Park, J.H.;Seo, J.W.;Choi, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.210-217
    • /
    • 2011
  • Recently, research on evaluating thermal comfort by using CFD has been vigorously active. This research evaluates not only distribution of temperature and air flow analysing but also thermal comfort in indoor space by applying human model. But research of human model's shape, Grid characteristic and turbulence model has not yet been studied. In this paper, human model's shape, physical characteristic of variable Grid, and change of turbulence model has been studies by CFD. In this study. FLUENT is used for analysis and PMV(predicted Mean Vote), PPD(Predicted Percentage Dissatisfied) and EHT(Equivalent Homogeneous Temperature} are used for evaluation and comparison of thermal comfort. As a result, it shows that shape of CSP and lattice features does not affect on global flow field or evaluation on PMV, PPD. However, it demonstrates more precise result from evaluation of thermal comfort by equivalent temperature when it used detailed human model considering prism grid.

  • PDF

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.