• 제목/요약/키워드: Thermal Fatigue Test

검색결과 183건 처리시간 0.027초

대기플라즈마 용사법으로 제조된 열차폐코팅의 열피로특성 평가 (Thermal Fatigue Behavior of Thermal Barrier Coatings by Air Plasma Spray)

  • 이한상;김의현;이정혁
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.363-369
    • /
    • 2008
  • Effects of top coat morphology and thickness on thermal fatigue behavior of thermal barrier coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and $300{\mu}m$ respectively. The thickness of top coat was about $700{\mu}m$ in the perpendicular cracked specimen (PCS). Under thermal fatigue condition at $1,100^{\circ}C$, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and thermally grown oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

엔진 배기매니폴드의 열피로 수명 예측 (Thermal Fatigue Life Prediction of Engine Exhaust Manifold)

  • 최복록
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.139-145
    • /
    • 2007
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermomechanical cyclic loadings. The analysis includes the FE model of the exhaust system, temperature dependent material properties, and thermal loadings. The result shows that at an elevated temperature, large compressive plastic deformations are generated, and at a cold condition, tensile stresses are remained in several critical zones of the exhaust manifold. From the repetitions of thermal shock cycles, plastic strain ranges could be estimated by the stabilized stress-strain hysteresis loops. The method was applied to assess the low cycle thermal fatigue for the engine exhaust manifold. It shows a good agreement between numerical and experimental results.

원자로냉각재계통 3" 분기관 용접부 위상배열초음파탐상검사(PAUT)기법 개발 (Development of the Phased Array Ultrasonic Test Technique for the Weld Inspection of Reactor Coolant System 3" Branch Connection Lines in Nuclear Power Plants)

  • 이승표;문용식;정남두;조용배;김창수
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.40-45
    • /
    • 2008
  • There exist many types of pipe and component fatigue through vibrations, thermal fatigues or shifting. In some cases of thermal stratification/thermal fatigue, pipes & components are receiving thermal stress by means of material expansion and shrinkage by continuous thermal repetitive variation. Small cracks initially occur on the inside surface by thermal stress. These cracks grow in depth the pipe wall and finally come to a rupture. Pipe parts of susceptibility to thermal stratification and thermal fatigue are now being examined by conventional UT(ultrasonic test) as volumetric examination. It is difficult to fully satisfy the code & standards requirements because 3" weldolet weldments of RCS 16" pipe to 3" branch connection lines have complex structural shape. To solve the problems of conventional UT examination, we made a realistic mock-up and UT calibration block. We performed a simulation of phased array UT utilizing CIVA as NDE(Non-Destructive Examination) simulation software. Also we designed phased array UT transducer and wedge, optimal frequency by using simulation data. We performed phased array UT experiment through mock-up including artificial flaws(notch). The phased array UT technique is finally developed to improve the reliability of ultrasonic test at RCS 16" pipe to 3" branch connection weld.

  • PDF

Thermal Fatigue Life of Underfilled $\mu\textrm$ BGA Solder Joint

  • Kim, H.H.;Han, S.W.;Kim, H.I.;Choi, M.;Shin, Y.E.
    • International Journal of Korean Welding Society
    • /
    • 제4권1호
    • /
    • pp.61-66
    • /
    • 2004
  • In this paper, the effect of underfill packages was investigated by numerical approach and experimental test. Reliability improvement was the main issue in the package technology. BGA, CSP and small-sized packages, have problems due to concentration of the stress in solder joints. One of the latest technologies to overcome is underfill encapsulant. Mainly, it is noticed the effect of the underfill in the packages. The predicted thermal fatigue lifes are performed by Coffin-Manson's equation with ANSYS (v.5.62). Also, thermal cycle test during from 218K to 423K was included. Finally we could find that underfill greatly reduce the concentration stress in solder joint, thus the fatigue life was improved than without underfill.

  • PDF

SM490B 용접부의 피로균열 성장 거동에 미치는 초고속 용사코팅 효과 (The Effect of High Velocity Oxygen Fuel Thermal Spray Coating on Fatigue Crack Growth Behavior for Welded SM490B)

  • 윤명진;최성종;조원익
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.99-106
    • /
    • 2006
  • High velocity oxygen-fuel thermal spray coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks, and also these coating are well-known method to improve the fatigue strength of material. In this study, HVOF coated SM490B are prepared to evaluation of the effect of coating on tension and fatigue crack growth behavior. The pre-crack of the fatigue crack growth test specimens machined at deposited material area, heat affected zone and boundary, respectively. Through these test, the following results are obtained: 1) Tensile strength was about 498 MPa, and fracture occurred on base metal area. 2) The fatigue crack of coated specimens propagated more rapidly than non-coated specimen in all specimens. 3) In the same coating thickness specimens, the specimens with pre-crack at boundary more rapidly propagated than the specimens with pre-crack at HAZ and deposited material area. These results can be used as basic data in a structural integrity evaluation of rolled SM490B weldments considering HVOF coating.

플립 칩 BGA 솔더 접합부의 열사이클링 해석 (Thermal Cycling Analysis of Flip-Chip BGA Solder Joints)

  • 유정희;김경섭
    • 마이크로전자및패키징학회지
    • /
    • 제10권1호
    • /
    • pp.45-50
    • /
    • 2003
  • 시스템 보드에 플립 칩 BGA가 실장된 3차원 유한요소 해석 모델을 구성하여 열사이클시험 과정에서 발생되는 솔더 접합부의 피로수명을 예측하였다. 피로 모델은 Darveaux의 경험식에 기초하여 비선형 점소성 해석을 수행하였다. 해석은 4종류의 열사이클시험 조건과 패드구조, 솔더 볼의 조성과 크기의 변화에 따라 발생하는 크리프 수명을 평가하였다. 해석결과 $-65∼150^{\circ}C$의 열사이클시험 조건에서 가장 짧은 피로수명을 보였으며, $0∼100^{\circ}C$ 조건과 비교하면 약 3.5 배 정도 증가하였다. 동일한 시험조건에서 패드구조 변화에 따른 피로수명 차이는 SMD구조가 NSMD구조에 비해 약 5.7% 증가하였다 결과적으로 솔더 접합부에서 크리프 변형에너지 밀도가 높으면 피로수명은 짧아지는 것을 알 수 있었다

  • PDF

Thermal and Mechanical Properties of Electro-Slag Cast Steel for Hot Working Tools

  • Moon Young Hoon;Kang Boo Hyun;Van Tyne Chester J.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.496-504
    • /
    • 2005
  • The thermal and mechanical properties of an electro-slag cast steel of a similar chemical composition with an AISI-6F2 steel are investigated and compared with a forged AISI-6F2 steel. AISI-6F2 is a hot-working tool steel. Electro-slag casting (ESC) is a method of producing ingots in a water-cooled metal mold by the heat generated in an electrically conductive slag when current passes through a consumable electrode. The ESC method provides the possibility of producing material for the high quality hot-working tools and ingots directly into a desirable shape. In the present study, the thermal and mechanical properties of yield strength, tensile strength, hardness, impact toughness, wear resistance, thermal fatigue resistance, and thermal shock resistance for electro-slag cast and forged steel are experimentally measured for both annealed and quenched and tempered heat treatment conditions. It has been found that the electro-slag cast steel has comparable thermal and mechanical properties to the forged steel.

자동차용 전구의 열피로수명의 확률론적 거동 (Statistical Analysis of Thermal Fatigue Life for Automobile bulb)

  • 박상필;오환섭;박종찬;박철희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.160-165
    • /
    • 2004
  • At this research, we examined probability of light bulb's life span value and prediction on purpose to inquire out the span of repeat velocity as fracture probability by executing the fatigue test, which is considered property of Tungsten filament's thermal fatigue used as an automobile bulb. As a result we can confirm what the most suitable solution is weibull distribution and log normal distribution. Tungsten filament's span gets longer as the fatigue repeat velocity gets shorter And, repeat span is about 15%~40% shorter than sequence life span.

  • PDF

언더필이 적용된 $\mu$p BGA 솔더 접합부의 열피로특성 (Thermal Fatigue Characteristics of $\mu$ BGA Solder Joints with Underfill)

  • 고영욱;김종민;이준환;신영의
    • Journal of Welding and Joining
    • /
    • 제21권4호
    • /
    • pp.25-30
    • /
    • 2003
  • There have been many researches for small scale packages such as CSP, BGA, and Flipchip. Underfill encapsulant technology is one of the latest assembly technologies. The underfill encapsulant could enhance the reliability of the packages by flowing into the gap between die and substrate. In this paper, the effects of underfill packages by both aspects of thermal and mechanical reliabilities are studied. Especially, it is focused to value board-level reliability whether by the underfill is applied or not. First of all, The predicted thermal fatigue lifes of underfilled and no underfilled $\mu$ BGA solder joints are performed by Coffin-Manson's equation and FEA program, ANSYS(version 5.62). Also, the thermal fatigue lifes of $\mu$ BGA solder joints are experimented by thermal cycle test during the temperature, 218K to 423k. Consequently, both experimental and numerical study show that $\mu$ BGA with underfill has over ten times better fatigue lift than $\mu$ BGA without underfill.