• 제목/요약/키워드: Thermal Failure

검색결과 753건 처리시간 0.029초

PDP 제조 공정시 유리의 열충격 파손 예측 (Prediction of thermal shock failure of glass during PDP manufacturing process)

  • 김재현;최병익;이학주
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.122-129
    • /
    • 2004
  • There is an increasing need for large flat panel display devices. PDP (Plasma Display Panel) is one of the most promising candidates for this need. Thermal shock failure of PDP glass during manufacturing process is a critical issue in PDP industry since it is closely related to the product yield and the production speed. In this study, thermal shock resistance of PDP glass is measured by water quenching test and an analysis scheme is described for estimating transient temperature and stress distributions during thermal shock. Based on the experimental data and the analysis results, a simple procedure for predicting the thermal shock failure of PDP glass is proposed. The fast cooling process for heated glass plates can accelerate the speed of PDP production, but often leads to thermal shock failure of the glass plates. Therefore, a design guideline for preventing the failure is presented from a viewpoint of high speed PDP manufacturing process. This design guideline can be used for PDP process design and thermal -shock failure prevention.

열피로에 의한 세라믹 코팅재의 파손 (Failure of Ceramic Coatings Subjected to Thermal Cyclings)

  • 한지원
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.1-5
    • /
    • 2005
  • An experimental study was conducted to develop an understanding of failure of ceramic coating when subjected to a thermal cycling. Number of cycles to failure were decreased as the coating thickness and the oxide of bond coat were increased. Using the finite element method, an analysis of stress distribution in ceramic coatings was performed. Radial compressive stress was increased in the top/bond coat interface with increasing coating thickness and oxide of bond coat.

광학엔진 렌즈의 고장 메커니즘에 대한 고찰 (Overview of Failure Mechanisms on Lens for Optical Engine)

  • 차종범;김광섭
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권2호
    • /
    • pp.173-186
    • /
    • 2006
  • This paper presents a study on the failure mechanism for optical engine of Projection TV. The lenses of which optical engine composes are failed by various environmental conditions, that is, thermal effect, moisture effect, mechanical shock or chemical effect. By surveying on actual TV working condition, the major factor of failure was turned out the thermal effect. Because the actual surface temperature of optical engine rose at max. $51^{\circ}C$ during it worked, the relative humidity around optical engine was kept at less than 20% that is difficult to do chemical reaction with humidity. Therefore we can make a conclusion that the major failure of optical engine resulted from thermal effect.

  • PDF

Repair bond strength of composite resin to zirconia restorations after different thermal cycles

  • Cinar, Serkan;Kirmali, Omer
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권5호
    • /
    • pp.297-304
    • /
    • 2019
  • PURPOSE. This in vitro study investigated the repair bond strength of the zirconia ceramic after different aging conditions. MATERIALS AND METHODS. In order to imitate the failure modes of veneered zirconia restorations, veneer ceramic, zirconia, and veneer ceramic-zirconia specimens were prepared and were divided into 4 subgroups as: control ($37^{\circ}C$ distilled water for 24 hours ) and 3000, 6000, 12000 thermal cycling groups (n=15). Then, specimens were bonded to composite resin using a porcelain repair kit according to the manufacturer recommendation. The repair bond strength (RBS) test was performed using a universal testing machine (0.5 mm/min). Failure types were analyzed under a stereomicroscope. Two-way ANOVA and Bonferroni test were used for statistical analysis. RESULTS. The RBS values of zirconia specimens were statistically significant and higher than veneer ceramic and veneer ceramic-zirconia specimens in control, 3000 and 6000 thermal cycling groups (P<.05). When 12000 thermal cycles were applied, the highest value was found in zirconia specimens but there was no statistically significant difference between veneer ceramic and veneer ceramic-zirconia specimens (P>.05). Veneer ceramic specimens exhibited cohesive failure types, zirconia specimens exhibited adhesive failure types, and veneer ceramic-zirconia specimens exhibited predominately mixed failure types. CONCLUSION. Thermal cycling can adversely affect RBS of composite resin binded to level of fractured zirconia ceramics.

열충격 시험을 통한 LED Package의 박리재현 및 특성에 관한 연구 (A Research on the reappearance of delamination and the characteristic of LED package by thermal shock test)

  • 장인혁;임홍우
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권3호
    • /
    • pp.207-216
    • /
    • 2013
  • This paper, we classified LED failure mechanisms that occur due to the delamination and analyzed each of the mechanism that gives the LED PKGs the effect. Usually, the LED is composed of several materials which are LED chips, gold wire, phosphor, epoxy resin, adhesive, reflector and lead frame. These different materials are usually delaminated in trouble conditions which are huge temperature difference, hot and humid or mechanical shocked. When the components are delaminated, a luminance will be lost and moisture be absorbed easily, a thermal resistance be increased attendantly. In this paper, we experimented to investigate failure mechanism of the thermal resistance and failure mechanism of the decrease of luminance that occur due to the delamination. A thermal shock test was performed to reproduce this phenomena by subjecting samples to a cold-hot cyclling process between $-30^{\circ}C$(15min) and $110^{\circ}C$(15min). The samples were inspected at 200, 600 and 1,000 cycles. We measured feature of LED using the spatial analyzer, optical microscope, thermal resistance, photometer, scanning electron microscope (SEM). As a result, the progression of the crack and the thermal resistance and decrease in luminance are proportional to number of thermal shock.

열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응 (The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles)

  • 오철민;박노창;한창운;방만수;홍원식
    • 대한금속재료학회지
    • /
    • 제47권8호
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

복합재료 접착체를 가지는 튜브형 접합부의 토크전달능력 예측 (Prediction of the Torque Capacity for Tubular Adhesive Joints with Composite Adherends)

  • 오제훈
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1543-1550
    • /
    • 2006
  • Since the performance of joints usually determines the structural efficiency of composite structures, an extensive knowledge of the behavior of adhesive joints and the related effect on joint strength is essential for design purposes. In this study, the torque capacity of adhesive joints was predicted using the combined thermal and mechanical analyses when the adherend was a composite tube. A finite element analysis was performed to evaluate residual thermal stresses developed in the joint, and mechanical s stresses in the adhesive were calculated including both the nonlinear adhesive behavior and the behavior of composite tubes. Three different joint failure modes were considered to predict joint failure: interfacial failure, adhesive bulk failure, and adherend failure. The influence of the composite adherend stacking angle on the residual thermal stresses was investigated, and how the residual thermal stresses affect the joint strength was also discussed. Finally, the predicted results were compared with experimental results available in literature.

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.

Ball Grid Array 63Sn-37Pb Solder joint 의 건전성 평가 (Reliability Estimation of Ball Grid Array 63Sn-37Pb Solder Joint)

  • 명노훈;이억섭;김동혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.630-633
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).

  • PDF