• Title/Summary/Keyword: Thermal Emission

Search Result 1,367, Processing Time 0.027 seconds

Research on surface coating of a solar collector using thermal spray foaming methodology for low cost (저가형 용사피막형성법 이용 태양열 집열판 표면 처리에 관한 연구)

  • Kim, Bu-Ahn;Choi, Kwang-Hwan;Roh, Sang-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.9-16
    • /
    • 2006
  • A solar collector surface coated with a low emission material is still imported from other developed countries expensively. Thus it is very significant to develop a new coating method with a cheap alternative coating material instead of the imported high-cost collector surface. A thermal spray method was adopted to coat a cheap Titania on a copper plate. Generally, a new coating on the copper plate was conducted successfully by selecting a proper ratio of carbon and acetylene. By measuring an absorption rate of solar and heat emission rate, all the plate types gained a high absorption rate of 98% approximately, more or less, but all of the types still have a high emission. Finally it was clear that more research is needed to advance the coated-plate to subdue the high emission from the hot plate surface and the higher the Titania's proportion is, the lower the emission is on the surface.

A Study on Acoustic Emission Characteristics through the Cyclic Thermal Test of Thermal Barrier Coating by Plasma Spray Process (플라즈마 용사법에 의한 열차폐 코팅의 열피로에 따른 AE신호 특성 연구)

  • Park J.H.;Lee K.H.;Ye K.H.;Kim S.T.;Jeon C.H.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1349-1352
    • /
    • 2005
  • This paper is to investigate a defect for thermal barrier coating layers by acoustic emission method in 4-point bending test. The two-layer thermal barrier coating is composed of $150\mu{m}\;CoNiCrAlY\;bond\;coating\;by\;vacuum\;plasma\;spray(VPS)\;process\;and\;250\mu{m}\;ZrO_2-8wt%Y_2O_3$ ceramic coating layer by air plasma spray(APS) process on Inconel-718. The specimen prepared by cyclic thermal test(500, 1000, 2000cycle) at $1050^{\circ}C$ The AE monitoring system is composed of PICO type sensor, a wide band pre-amplifier(40dB), PC and AE DSP(16/32 PAC) board. The AE event, amplitude, Cumulative energy and count of coating specimens is evaluated according to cyclic thermal test.

  • PDF

Thermal Effects of Single Silicon Tip Emitters with Various Tip Radii

  • Lee, Jong-Duk;Oh, Chang-Woo;Park, Jae-Woo;Park, Byung-Gook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.681-684
    • /
    • 2002
  • To investigate thermal effects of silicon field emitter, we fabricated and characterized single silicon tips with various tip radii, which generate different joule heating. Through I-V and stability tests, the changes of emission characteristics and tip structures due to different tip heating were observed and discussed. From the results, we confirmed that the changes of emission characteristics due to thermal effects in silicon emitter could occur at relatively small emission currents and concluded that the thermal effects should be also considered under normal operation condition above 1 ${\mu}A$.

  • PDF

Effect of Reduced Valve Overlap on Emission Characteristics of Hydrogen-Compressed Natural Gas Engine (수소-천연가스엔진에서 밸브오버랩 감소가 배기특성에 미치는 영향)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • In order to meet the current emission regulations (EURO-6), it is necessary to significantly reduce $CH_4$ and $NO_X$ emissions. This study investigated the effect of a reduction in the valve overlap on the combustion and emission characteristics of a hydrogen-compressed natural gas engine under a part-load operating condition. The combustion and emission characteristics were analyzed for each fuel using the original camshaft and an altered camshaft with reduced valve overlap. The results showed that the thermal efficiency was decreased and the fuel flow was increased when using the altered camshaft. The $CO_2$ and $CH_4$ emissions were increased as a result of the reduced thermal efficiency. Under lean operating conditions, the $NO_X$ emission was decreased compared with one of the conventional camshaft. Thus, under the same fuels and operating conditions, it had a harmful influence on the emission characteristics and thermal efficiency.

Thermal Shock Stress Intensity Factor and Fracture Test (열충격 응력세기계수와 파괴실험)

  • 이강용;심관보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.130-137
    • /
    • 1990
  • Thermal shock stress intensity factor for an edge-cracked plate subjected to thermal shock is obtained from Bueckner's weight function method. It is shown that thermal shock stress intensity factor has maximum values with variation of time and crack length and that there is most dangerous crack length. By comparing thermal shock stress intensity factor with fracture toughness, the fracture time and critical temperature difference due to thermal shock are determined theoretically. Under constant thermal shock temperature difference, and increase of crack length is shown to increase fracture time. The theoretical fracture time is compared with experimental value measured by acoustic emission method with soda lime glass.

Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation (EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성)

  • 조윤호;구준모;장진영;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.

Thermal Durability Analysis Due to Material of Radiator Fan (라디에이터 팬의 재질에 따른 열 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.789-794
    • /
    • 2013
  • In this study, the temperature, heat emission per unit time, and thermal stress or deformation of a radiator fan made of polyethylene or aluminum are analyzed for investigating its strength durability. Heat transfer in the case of the aluminum radiator fan is better than that in the case of the polyethylene radiator fan. Further, heat emission in the case of the aluminum fan is poorer than that in the case of the polyethylene fan. Moreover, because the thermal deformation of aluminum is much smaller than that of polyethylene, the thermal durability of the aluminum fan is better than that of the polyethylene fan. In an open space in front of the radiator and the closed space of the engine behind it, the thermal cooling effect of the polyethylene fan is better than that of the aluminum fan. Further, since polyethylene is lighter in weight than aluminum, polyethylene, as a nonmetallic plastic, is more suitable as a material of an automotive radiator. However, because of the higher strength durability of the aluminum fan, it is better than the polyethylene fan under high-temperature conditions or in the case of a complex pipe.

Electrical and thermal properties of polyamideimide-colloid silica nanohybrid for magnetic enameled wire

  • Han, S.W.;Kang, D.P.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.428-432
    • /
    • 2012
  • Polyamidimide (PAI)-colloidal silica (CS) nanohybrid films were synthesized by an advanced sol-gel process. The synthesized PAI-CS hybrid films have a uniform and stable chemical bonding and there is no interfacial defects observed by TEM. The thermal degradation ratio of PAI-CS (10 wt%) hybrid films is delayed by 100 ℃ compared with pure PAI sample determined by on set temperature range in TGA. The dielectric constant of PAI-CS (10 wt%) hybrid films decreases with increasing CS content up to about 5 wt% but increases at higher CS content, which is not explained simply by effective medium therories (EMT). The duration time of PAI-CS (10 wt%) hybrid coil is 38 sec, which is very longer than that of pure PAI coil sample. The PAI-CS (10 wt%) hybrid film has a higher breakdown voltage resistance than the pure PAI film at surge environment and exhibits superior heat resistance. The PAI-CS (10 wt%) sample shows the advanced and stable thermal emission properties in transformer module compared with the pure PAI sample. This result illustrates that the advanced thermal conductivity and expansion properties of PAI-CS sample in the case of appropriate sol-gel processes brings the stable thermal emission in transformer system. Therefore, new PAI-CS hybrid samples with such stable thermal emission properties are expected to be used as a high functional coating application in ET, IT and electric power products.

Thermal Characteristic Evaluation of Functionally Graded Composites for PSZ/Metal

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.298-305
    • /
    • 2000
  • The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/ metal composites. Heat-resistant property was evaluated by gas burner heating test using $C_2H_2/O_2$ combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermo mechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.

  • PDF

Fracture Characteristics of NiCr/ZrO2 Functionally Graded Material by Gas Burner Thermal Shock (가스버너 열충격에 의한 NiCr/ZrO2계 경사기능재의 열적 파괴특성)

  • Song, Jun-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.247-252
    • /
    • 2006
  • Joining Yittria Stabilized Zirconia (YSZ) to NiCr metal was fabricated using YSZ/NiCr Functionally Graded Materials (FGM) Interlayer by hot pressing process. Microscopic observations demonstrate that the composition and microstructure of YSZ/NiCr FGM distribute gradually in stepwise way, eliminating the macroscopic ceramic/metal interface such as that in traditional ceramic/metal joint. The thermal characteristics of this YSZ/FGM/NiCr joint were studied by thermal shock testing and therml barrier testing. Thermal shock test was conducted by gas burner rig. Acoustic Emission (AE) monitoring was performed to analyze the microfracture behavior during the thermal shock test. It could be confirmed that FGM was the excellent performance of thermal shock/barrier resistance at above $1000^{\circ}C$.