• Title/Summary/Keyword: Thermal Emission

Search Result 1,365, Processing Time 0.031 seconds

THERMAL AND NON-THERMAL RADIO CONTINUUM SOURCES IN THE W51 COMPLEX

  • MOON DAE-SIK;KOO BON-CHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.81-102
    • /
    • 1994
  • We have decomposed the 11-cm radio continuum emission of the W51 complex into thermal and non-thermal components. The distribution of the thermal emission has been determined by analyzing HI, CO, and IRAS $60-{\mu}m$ data. We have found a good correlation between the 11-cm thermal continuum and the 60- 11m emissions, which is used to obtain the thermal and non-thermal 11-cm continuum maps of the W51 complex. Most of the thermal continuum is emanating from the compact H II regions and their low-density ionized envelopes in W51A and W51B. All the H II regions, except G49.1-0.4 in W51B, have associated molecular clumps. The thermal radio continuum fluxes of the compact H II regions are proportional to the CO fluxes of molecular clumps. This is consistent with the previous results that the total mass of stars in an H II region is proportional to the mass of the associated molecular clump. According to our result, there are three non-thermal continuum sources in W51: G49.4-0.4 in W51A, a weak source close to G49.2-0.3 in W51B, and the shell source W51C. The non-thermal flux of G49.5-0.4 at 11-cm is $\~28 Jy$, which is $\~25\%$ of its total 11-cm flux. The radio continuum spectrum between 0.15 and 300 GHz also suggests an excess emission over thermal free-free emission. We show that the excess emission can be described as a non-thermal emission with a spectral index ${\alpha}{\simeq}-1.0 (S_v{\propto}V^a)$ attenuated by thermal free-free absorptions at low-frequencies. The non-thermal source close to G49.2-0.3 is weak $(\~9 Jy)$. The nature of the source is not known and the reality of the non-thermal emission needs to be confirmed. The non~thermal shell source W51C has a 11-cm flux of $\~130Jy$ and a spectral index ${\alpha}{\simeq}-0.26$.

  • PDF

IMAGING NON-THERMAL X-RAY EMISSION FROM GALAXY CLUSTERS: RESULTS AND IMPLICATIONS

  • HENRIKSEN MARK;HUDSON DANNY
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.299-305
    • /
    • 2004
  • We find evidence of a hard X-ray excess above the thermal emission in two cool clusters (Abell 1750 and IC 1262) and a soft excess in two hot clusters (Abell 754 and Abell 2163). Our modeling shows that the excess components in Abell 1750, IC 1262, and Abell 2163 are best fit by a steep power law indicative of a significant non-thermal component. In the case of Abell 754, the excess emission is thermal, 1 ke V emission. We analyze the dynamical state of each cluster and find evidence of an ongoing or recent merger in all four clusters. In the case of Abell 2163, the detected, steep spectrum, non-thermal X-ray emission is shown to be associated with the weak merger shock seen in the temperature map. However, this shock is not able to produce the flatter spectrum radio halo which we attribute to post-shock turbulence. In Abell 1750 and IC 1262, the shocked gas appears to be spatially correlated with non-thermal emission suggesting cosmic-ray acceleration at the shock front.

Effects of Interlayer Formation and Thermal Treatment on Field-emission Properties of Carbon Nanotube Micro-tips (계면층 형성 및 열처리가 탄소 나노튜브 미세팁의 전계방출 특성에 미치는 영향)

  • Kim, Bu-Jong;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • The effects of interlayer formation and thermal treatment on the field-emission properties of carbon nanotubes (CNTs) were investigated. The CNTs were prepared on tungsten (W) micro-tip substrates using the electrophoretic deposition (EPD) method. The interlayers, such as aluminum (Al) and hafnium (Hf) were coated on the W-tips prior to CNT deposition and after the deposition of CNTs all the species were thermally treated at $700^{\circ}C$ for 30 min. The field-emission properties of CNTs were significantly improved by thermal treatment. The threshold electric field for igniting the electron emission was decreased and the emission current was increased. The Raman spectroscopy results indicated that this was attributed mainly to the enhancement of CNTs by thermal treatment. Also, the CNTs deposited on the interlayers showed the remarkably improved results in the long-term emission stability, especially when they were thermally treated. The X-ray photoelectron spectroscopy (XPS) measurement confirmed that this was resulted from the formation of the additional cohesive forces between the CNTs and the underlying interlayers.

Thermo-Acoustic Emission Behavior of Composites (복합재료의 열-음향방출거동)

  • 김영복;우성충;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.111-115
    • /
    • 2001
  • Thermo-acoustic emission (AE) from composite laminates under the repetitive thermal cyclic loads have been quantitatively analyzed in consideration of AE source mechanisms. The repetitive thermal load brought about a large reduction, i.e. an exponential decrease in AE total ringdown counts and AE amplitudes. It was thought that generation of thermo-AE during the first thermal cycle was not caused by crack propagation but by secondary microfracturing due to abrasive contact between crack surfaces.

  • PDF

Study on Characteristics of Catalytically Supported Thermal Combustion for Gas Turbine (가스터어빈용 촉매연소기를 위한 촉매-화염 복합 연소 특성연구)

  • Lee, Kyung-Wong;Chung, Nam-Jo;Ryu, In-Soo;Cho, Sung-June;Kang, Sung-Kyu;Chun, Kwang-Min;Song, Kwang-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.73-82
    • /
    • 2001
  • The characteristics of the catalytically supported thermal combustion with Pd-based catalyst using the bench scale high pressure combustor has been investigated up to 7 atm. The emission of $NO_{\chi}$ depends on the preheating temperature and the excess air ratio. Most $NO_{\chi}$ emission seems to come from the pre-burner for the preheating of the inlet gas. Decreasing excess air ratio in the inlet gas below 1.5 results in the stable catalytically supported thermal combustion in the post combustion region while the $NO_{\chi}$ emission increased up to 15 ppm. Further, the increase of the pressure shows the dramatic increase of the emission CO and THC. However, the $NO_{\chi}$ emission decreased slightly due to the lower combustion temperature at the high pressure.

  • PDF

Calculation of CO2 Emission for Fossil-Fired Thermal Power Plant considering Coal-Oil Mix Rate (혼소율을 고려한 화력 발전소의 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Kim, Soon-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.67-72
    • /
    • 2010
  • G8 summit meeting held in July 2008 decided to set up a long-term goal, by 2050, reducing the world greenhouse emissions by half of those emitted in 1990. In November 2009, the Government announced to reduce the national $CO_2$ emission by 30[%] of BAU by 2020. Electric power industries in Korea produce most of their electricity by burning fossil fuels, and emit approximately 28[%] of national $CO_2$ emissions. Monitoring the $CO_2$ emissions. Monitoring the $CO_2$ emission of electric power plants is very important. This paper presents a method to calculate the hourly $CO_2$ emission for a thermal power plant burning mixture of coal and oil using the performance test data and coal-oil mix rate. An example of $CO_2$ emission calculation is also demonstrated.

Effects of Carbon Nitride Surface Layers and Thermal Treatment on Field-Emission and Long-Term Stability of Carbon Nanotube Micro-Tips (질화탄소 표면층 및 열처리가 탄소 나노튜브 미세팁의 전계방출 및 장시간 안정성에 미치는 영향)

  • Noh, Young-Rok;Kim, Jong-Pil;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • The effects of thermal treatment on CNTs, which were coated with a-$CN_x$ thin film, were investigated and related to variations of chemical bonding and morphologies of CNTs and also properties of field emission induced by thermal treatment. CNTs were directly grown on nano-sized conical-type tungsten tips via the inductively coupled plasma-chemical vapor deposition (ICP-CVD) system, and a-$CN_x$ films were coated on the CNTs using an RF magnetron sputtering system. Thermal treatment on a-$CN_x$ coated CNT-emitters was performed using a rapid thermal annealing (RTA) system by varying temperature ($300-700^{\circ}C$). Morphologies and microstructures of a-$CN_x$/CNTs hetero-structured emitters were analyzed by FESEM and HRTEM. Chemical composition and atomic bonding structures were analyzed by EDX, Raman spectroscopy, and XPS. The field emission properties of the a-$CN_x$/CNTs hetero-structured emitters were measured using a high vacuum (below $10^{-7}$ Torr) field-emission measurement system. For characterization of emission stability, the fluctuation and degradation of the emission current were monitored in terms of operation time. The results were compared with a-$CN_x$ coated CNT-emitters that were not thermally heated as well as with the conventional non-coated CNT-emitters.

THE DISTRIBUTION MODELS OF THERMAL AND NON-THERMAL RADIO CONTINUUM EMISSION IN THE GALACTIC DISK

  • SANGUANSAK N.;OSBORNE J. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.169-170
    • /
    • 1996
  • In the past, it. was very difficult to distinguish thermal and non-thermal emission. Broadbent et a1. (1989) has developed a new technique with the help of the IRAS 60 micron emission. The distribution of non-thermal or synchrotron emission in the Galactic disk has been modeled from the 408 MHz all sky survey of Haslam et a1. (1982) after removal of the thermal component.. At. 408 MHz, t.here is very little absorption in the interstellar medium and the distribution along the line-of-sight. is inferred mainly from its presumed relationship to other tracers of spiral structure via a. number of fitted parameters. But. at lower frequencies, free-free absorption becomes important and can give some direct. information on the line of sight. distribution. We have modeled the thermal electron density according to the spiral arm models and the distribution of ionized hydrogen in the Galactic plane by Lockman (1976) and Cersosimo et. al. (1989) and have made predictions to compare with the surveys of Dwarakanath et al. (1990) at. 34.5 MHz and .Jones and Finlay (1974) at 29.9 MHz. The result confirms that the absorption model of the synchrotron emissivity in the Galactic plane is broadly corrected and illustrates the potential of the absorption technique.

  • PDF

G192.8-1.1: A CANDIDATE OF AN EVOLVED THERMAL COMPOSITE SUPERNOVA REMNANT REIGNITED BY NEARBY MASSIVE STARS

  • Kang, Ji-Hyun;Koo, Bon-Chul;Byun, Do-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.259-277
    • /
    • 2014
  • G192.8-1.1 has been known as one of the faintest supernova remnants (SNRs) in the Galax until the radio continuum of G192.8-1.1 is proved to be thermal by Gao et al. (2011). Yet, the nature of G192.8-1.1 has not been fully investigated. Here, we report the possible discovery of faint non-thermal radio continuum components with a spectral index ${\alpha}{\sim}0.56(S_{\nu}{\propto}{\nu}^{-{\alpha}})$ around G192.8-1.1, while of the radio continuum emission is thermal. Also, our Arecibo $H_I$ data reveal an $H_I$ shell, expanding with an expansion velocity of $20-60km\;s^{-1}$, that has an excellent morphological correlation with the radio continuum emission. The estimated physical parameters of the $H_I$ shell and the possible association of non-thermal radio continuum emission with it suggest G192.8-1.1 to be an~0.3 Myr-old SNR. However, the presence of thermal radio continuum implies the presence of early-type stars in the same region. One possibility is that a massive star is ionizing the interior of an old SNR. If it is the case, the electron distribution assumed by the centrally-peaked surface brightness of thermal emission implies that G192.8-1.1 is a "thermal-composite" SNR, rather than a typical shell-type SNR, where the central hot gas that used to be bright in X-rays has cooled down. Therefore, we propose that G192.8-1.1 is an old evolved thermal-composite SNR showing recurring emission in the radio continuum due to a nearby massive star. The infrared image supports that the $H_I$ shell of G192.8-1.1 is currently encountering a nearby star forming region that possibly contains an early type star(s).

Non-destructive Leakage Location Analysis Method in Substrate Behavior Response Testing of Waterproofing Membrane Systems using Thermal Emission Camera

  • Oh, Kyu-Hwan;Jiang, Bo;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.47-48
    • /
    • 2017
  • The substrate behavior response testing outlined in KS F 2622 evaluates the leakage cause of waterproofing membrane systems when subjected to the concrete joint load behaviors by removing the waterproofing layer after testing, relying mostly on visual observation and subjective analysis. A non-destructive leakage cause and failure type analysis method is proposed currently in this study by the means of detecting leakage paths using thermal emission imaging systems. Test specimens are placed in varying temperature conditions after the concrete joint movement testing and are scanned using the thermal emission camera to determine the location and dimension of the adhesion failure/leakage path beneath the waterproofing membranes.

  • PDF