• Title/Summary/Keyword: Thermal Deformation

Search Result 1,341, Processing Time 0.025 seconds

Modeling and Compensatory Control of Thermal Error for the Machine Orgin of Machine Tools (공작기계 원점 열변형오차의 모델링 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.19-28
    • /
    • 1999
  • In order to control thermal deformation of the machine origin of machine tools a empirical model and a compensation system have been developed, Prior to empirical modeling the volumetric error considering shape errors and joint errors of slides is formulated through the homogeneous transformation matrix (HTM) and kinematic chain. Simulation results of the HTM method show that the thermal error of the machine origin is more critical than position-dependent errors. In order to make a stable and effective software error compensation system the GMDH (Group Method of Data Handling) models are constructed to estimate the thermal deformation of the machine origin by measuring deformation data and temperature data. A test bar and gap sensors are used to measure the deformation data. In order to compensate the estimated error the work origin shift method is developed by implementing a digital I/O interface board between a CNC controller and an IBM PC. The method shifts the work origin as much as the amounts which are calculated by the pre-established thermal error model. The experiment results for a vertical machining center show that the thermal deformation of the machine origin is reduced within $\pm$5$mu extrm{m}$.

  • PDF

Thermal Deformation Analysis of Shadow Mask in a Flat TV and Prediction of Electron Beam Landing Shift by FEM (유한요소법에 의한 평면 TV 새도우마스크의 열변형해석 및 전자빔 오착 예측)

  • Kim, Jeong;Park, Soo-Kil;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2297-2304
    • /
    • 2002
  • Two-dimensional and three-dimensional finite element methods have been used to analyze the deformation behavior of a shadow mask due to thermal and tension load. The shadow mask inside the Braun tube of a TV set has numerous slits through which the electron beams are guided to land on the designed phosphor of red, green or blue. Its thermal deformation therefore causes landing shift of the electron beam and results in decolorization of a screen. For the realistic finite element analysis, the effective thermal conductivity and the effective elastic modulus arc calculated, and then the shadow mask is modeled as shell without slits. Next a transient thermal analysis of the shadow mask is performed, wherein thermal radiation is a major heat transfer mechanism. Analysis of the resulting thermal deformation is followed, from which the landing shift of the electron beam is obtained. The present finite element scheme may be efficiently used to reduce thermal deformation of a shadow mask and in developing prototypes of a large screen flat TV.

Design and control of the precision heat actuator using thermoelectric device (열전소자를 이용한 정밀 열구동기구의 설계 및 제어)

  • 서장렬;김선민;이선규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.395-398
    • /
    • 1997
  • In the modem manufacturing system, to achieve the unmanned automation, the stability of accuracy is required through a long working period. The thermal deformation of precision machine is predominant in this long time stability. While grinding slender and long workpiece at cylindrical grinding machine, we support workpiece using steadies to prevent the vibration of workpiece. The thermal deformation of the machine by grinding and internal heat source cause processing errors, so the steadies for compensating the thermal deformation in real time are strongly needed. In order to compensate these thermal deformation and grinding processing errors, the device to determine the precise positioning having the stroke of 10.mu.m is necessary. This paper suggests design and make the device to determine the precise positioning using thermoelectric device, to investigate the control characteristics and presents the heat actuator will be very useful in machine tool.

  • PDF

A Study on Thermal Deformation due to Fan Shape of Hair Dryer (헤어드라이기의 팬 형상에 따른 열변형에 관한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.82-87
    • /
    • 2017
  • This study investigates thermal deformation due to fan shape of a hair dryer. In this study, thermal analysis showed that the shape of an electric fan results in lower temperature than that of a sieve frame. Among the shapes of electric fans, the temperature change decreases as the number of wings decreases. As a result of thermal deformation, model 4 (sieve frame shape) showed increased change of deformation compared to models 1, 2, and 3 (with electric fan shapes). Thus, the model 1 dryer with the sieve frame shape is shown to have the least durability among models 1, 2, 3, and 4. It is thought that the analysis results of this study can be applied to durability improvement and safer design of hair dryers.

A Study on the Effect of Tool Thermal Deformation on Surface Roughness for Turning Process

  • Hong, Min-Sung;Lian, Zhe-Man;Kim, Dong-Joon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.262-267
    • /
    • 2000
  • During the turning of the workpiece, cutting heat causes thermal deformation of the cutting tool which influences the surface characteristics of the machined part. This paper presents a study of thermal deformation of the cutting tool. For this purpose, cutting tool is modeled based on Pro/Engineering and temperature and deformation are simulated by means of the finite element method. The thermal effect on the surface roughness profile is simulated by using surface-shaping system.

  • PDF

A study on the thermal deformation characteristics of steel plates due to multi-line heating

  • Lee, Joo-Sung;Lee, Sang-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.48-59
    • /
    • 2018
  • This paper is mainly concerned with developing the formulae of predicting thermal deformation of steel plate due to multi-line heating. By investigating the results of line heating test and numerical analysis, reasonable heat flux model has been defined. Formulae of predicting the transverse shrinkage and the angular distortion as the dominant thermal deformation types in plate forming by line heating have been derived based on the results of line heating test and numerical analysis with varying plate thickness, heating speed and distance between torches. This paper illustrates how the derived formulae are used in investigating the effect of multi-line heating upon the thermal deformation and how they can be used in defining the limit distance with that there is no interacted effect between torches. This paper ends with describing the extension of the present study.

Development of a multi-sensing technique for temperature and strain field of high-temperature using thermographic phosphors (온도감응형 인광물질을 이용한 온도장 및 열변형 동시 계측 기법 개발)

  • Im, Yujin;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.77-83
    • /
    • 2021
  • Solid oxide fuel cell (SOFC) operates at high temperatures in range of 600-800℃. Since layers of SOFC are composed of different substances, different thermal expansion in SOFC can result in defects under high temperature conditions. For understanding relation between temperature field and the thermal deformation in SOFC, temperature and strain field were simultaneously estimated using thermographic phosphors by optical measurement. Temperature fields were obtained by the life-time method, and the temperature differences of one specimen was checked with thermocouple. The thermal deformation was estimated by digital image correlation (DIC) method with extracted phosphorescence images. To investigate the deformation accuracy of DIC measurement, thermographic phosphors were coated with and without grid pattern on aluminum surface. Simultaneous measurement of temperature fields and thermal deformation were carried out for YSZ. This study will be helpful to multi-sensing of temperature field and thermal deformation on SOFC cells.

Analysis on the Thermal Deformation of Flip-chip Bump Layer by the IMC's Implication (IMC의 영향에 따른 Flip-Chip Bump Layer의 열변형 해석)

  • Lee, Tae Kyoung;Kim, Dong Min;Jun, Ho In;Huh, Seok-Hwan;Jeong, Myung Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Recently, by the trends of electronic package to be smaller, thinner and more integrative, fine bump is required. but It can result in the electrical short by reduced cross-section of UBM and diameter of bump. Especially, the formation of IMCs and KV can have a significant affects about electrical and mechanical properties. In this paper, we analyzed the thermal deformation of flip-chip bump by using FEM. Through Thermal Cycling Test (TCT) of flip-chip package, We analyzed the properties of the thermal deformation. and We confirmed that the thermal deformation of the bump can have a significant impact on the driving system. So we selected IMCs thickness and bump diameter as variable which is expected to have implications for characteristics of thermal deformation. and we performed analysis of temperature, thermal stress and thermal deformation. Then we investigated the cause of the IMC's effects.

Molding and Evaluation of Ultra-Precision Chalcogenide-Glass Lens for Thermal Imaging Camera Using Thermal Deformation Compensation (열변형 보정을 통한 열화상카메라용 초정밀 칼코지나이드 유리렌즈 몰드성형 및 특성 평가)

  • Cha, Du Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • Aspheric lenses used in the thermal imaging are typically fabricated using expensive single-crystal materials (Ge and ZnS, etc.) by the costly single point diamond turning (SPDT) process. As a potential solution to reduce cost, compression molding method using chalcogenide glass has been attracted to fabricate IR optic. Thermal deformation of a molded lens should be compensated to fabricate chalcogenide aspheric lens with form accuracy of the submicron-order. The thermal deformation phenomenon of molded lens was analyzed ant then compensation using mold iteration process is followed to fabricate the high accuracy optic. Consequently, it is obvious that compensation of thermal deformation is critical and useful enough to be adopted to fabricate the lens by molding method.