• 제목/요약/키워드: Thermal Damage

검색결과 919건 처리시간 0.026초

한중콘크리트의 최적배합에 관한 연구 (A Study on Optimal Mix Design of Cold-Weather Concrete)

  • 소현창;정병욱;정경화;문성규;손석제
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.313-318
    • /
    • 1998
  • Generally, the concrete constructed during cold weather has the frozen damage which cause the fatal damage so that heat curing and sheet curing was performed to prevent the early freezing of concrete. However, partial refrigeration caused by thermal gradient has many troubles so that the construction hasn`t been done as possible. This paper presents the development of strenth properties and optimal mix design against frozen damage under the cold weather, 1$0^{\circ}C$ below the zero.

  • PDF

콘크리트 포장에서 발생하는 온도피해 저감에 관한 연구 (A Study on the Reduction of Temperature Damage in Concrete Pavement)

  • 김재돈;장일영
    • 한국재난정보학회 논문집
    • /
    • 제19권2호
    • /
    • pp.305-312
    • /
    • 2023
  • 연구목적: 본 연구에서는 콘크리트 포장의 온도피해를 줄이기 위해 상변화에너지가 큰 PCM을 콘크리트에 혼입하고 이에 따른 성능테스트를 진행하였다. 연구방법:저온 및 고온에 대한 온도피해를 감소시키기 위해 4.5℃와 44℃의 상변화 온도를 가지는 캡슐형 PCM을 10%, 30%, 50% 치환하여 콘크리트에 혼입하였으며 열전대와 변온챔버를 활용하여 열성능 실험과 압축강도 실험을 진행하였다. 연구결과: 열성능 실험 결과 PCM의 혼입은 최대 25%이상의 온도저항성을 향상시키는 것으로 나타났으며 다량 치환시 높은 비열로 모든 온도에서 열저항성을 높이는 것으로 나타났다. 압축강도 실험 결과 30%이상의 치환은 압축강도를 저하시키는 결과를 나타냈으며 PCM의 상변화온도를 기준으로 큰 강도차이를 나타냈다. 결론: PCM의 혼입은 콘크리트의 열성능을 증가시키는 것으로 나타냈으며 PCM의 상변화온도 부근에서 가장 큰 열성능 증가폭을 나타냈다. 또한 가장 높은 치환율인 50% 치환에서 10%~20%의 작은 강도저하가 발생하였으므로 사용성에 큰 문제가 없을 것으로 판단되며 열성능 향상을 위해 추가적인 PCM 투입이 가능할 것으로 판단된다.

Deformation Analysis of Impact Damaged Composite Tube Using Thermal Shearography

  • Kim, Koung-Suk;Chang, Ho-Seob;Jang, Su-Ok;Lee, Seung-Seok;Jang, Wan-Sik;Jung, Hyun-Chul
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.302-308
    • /
    • 2008
  • Composite materials are widely used as structural materials for aerospace engineering because of its excellent mechanical properties such as light weight, high stiffness, and low thermal expansion. In driving, impact damage is one of the common but dangerous damages, caused by internal failure of the laminas interface which is not detected by in the surface. Many techniques to detect defects or delaminate between laminates have been reported. Shearography is a kind of laser speckle pattern interferometry with the advantages of non-destructive, non-contact, high resolution and displacement slope measurement. In this paper, the shearography is used to evaluate non-destructively impact damaged surface of the composite material and a measuring method using shearography for the thermal deformation of a impact damaged composite material is discussed. The basic principles of the technique are also described briefly.

해저송유관의 열팽창 고찰 (Study on Sebsea Pipeline Thermal Expansion)

  • 조철희;홍성근
    • 한국해안해양공학회지
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 1999
  • 해안 및 해양에 설치되어 있는 해저관로는 원유, 가스, 물과 이들의 혼합된 유체들을 전달하기 위한 수단으로 사용되고 있다. 관로 내부 유체의 열과 압력 차이는 해저관로의 팽찰을 야기시킨다. 해전관로 팽창은 관로와 연결되는 구조물들에 응력을 유발시킨다. 작용 응력이 연결 부재의 항복점을 초과하거나 전체 시스템의 허용변형을 초과할 경우 구조물에 손상이 발생된다. 해안 및 해양에 설치되는 해저관로는 주로 위험 물질이나 유독 유체를 포함하기 때문에 만약 이런 유체의 유출이 발생될 경우 인명 피해는 물론 큰 경제적 손실을 가져온다. 비록 해저관로는 시간적/공간적 제약 없이 유체를 전달할 수 있지만, 이런 관로 설계시 안전하게 그 기능을 수행할 수 있도록 고려되어야 한다. 본 논문에서는 해저관로의 열변형 해석에 사용되는 여러 개의 이론을 조사하였고, 관로의 요소들이 관로 팽창에 미치는 영향에 대해 조사하였다.

  • PDF

DEVELOPMENT OF GREEN'S FUNCTION APPROACH CONSIDERING TEMPERATURE-DEPENDENT MATERIAL PROPERTIES AND ITS APPLICATION

  • Ko, Han-Ok;Jhung, Myung Jo;Choi, Jae-Boong
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.101-108
    • /
    • 2014
  • About 40% of reactors in the world are being operated beyond design life or are approaching the end of their life cycle. During long-term operation, various degradation mechanisms occur. Fatigue caused by alternating operational stresses in terms of temperature or pressure change is an important damage mechanism in continued operation of nuclear power plants. To monitor the fatigue damage of components, Fatigue Monitoring System (FMS) has been installed. Most FMSs have used Green's Function Approach (GFA) to calculate the thermal stresses rapidly. However, if temperature-dependent material properties are used in a detailed FEM, there is a maximum peak stress discrepancy between a conventional GFA and a detailed FEM because constant material properties are used in a conventional method. Therefore, if a conventional method is used in the fatigue evaluation, thermal stresses for various operating cycles may be calculated incorrectly and it may lead to an unreliable estimation. So, in this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using an artificial neural network and weight factor. To verify the proposed method, thermal stresses by the new method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed.

CSPACE for a simulation of core damage progression during severe accidents

  • Song, JinHo;Son, Dong-Gun;Bae, JunHo;Bae, Sung Won;Ha, KwangSoon;Chung, Bub-Dong;Choi, YuJung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3990-4002
    • /
    • 2021
  • CSPACE (Core meltdown, Safety and Performance Analysis CodE for nuclear power plants) for a simulation of severe accident progression in a Pressurized Water Reactor (PWR) is developed by coupling of verified system thermal hydraulic code of SPACE (Safety and Performance Analysis CodE for nuclear power plants) and core damage progression code of COMPASS (Core Meltdown Progression Accident Simulation Software). SPACE is responsible for the description of fluid state in nuclear system nodes, while COMPASS is responsible for the prediction of thermal and mechanical responses of core fuels and reactor vessel heat structures. New heat transfer models to each phase of the fluid, flow blockage, corium behavior in the lower head are added to COMPASS. Then, an interface module for the data transfer between two codes was developed to enable coupling. An implicit coupling scheme of wall heat transfer was applied to prevent fluid temperature oscillation. To validate the performance of newly developed code CSPACE, we analyzed typical severe accident scenarios for OPR1000 (Optimized Power Reactor 1000), which were initiated from large break loss of coolant accident, small break loss of coolant accident, and station black out accident. The results including thermal hydraulic behavior of RCS, core damage progression, hydrogen generation, corium behavior in the lower head, reactor vessel failure were reasonable and consistent. We demonstrate that CSPACE provides a good platform for the prediction of severe accident progression by detailed review of analysis results and a qualitative comparison with the results of previous MELCOR analysis.

The thermal impedance spectroscopy on Li-ion batteries using heat-pulse response analysis

  • Barsoukov Evgenij;Jang Jee Hwan;Lee Hosull
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2001년도 전지기술심포지움
    • /
    • pp.145-161
    • /
    • 2001
  • Novel characterization of thermal properties of a battery has been introduced by defining its frequency-dependent thermal impedance function. Thermal impedance function can be approximated as a thermal impedance spectrum by analyzing experimental temperature transient which is related to the thermal impedance function through Laplace transformation. In order to obtain temperature transient, a process has been devised to generate external heat pulse with heating wire and to measure the response of battery. This process is used to study several commercial Li-ion batteries of cylindrical type. The thermal impedance measurements have been performed using potentionstat/galvanostate controlled digital signal processor, which is more commonly available than flow-meter usually applied for thermal property measurements. Thermal impedance spectra obtained for batteries produced by different manufactures are found to differ considerably. Comparison of spectra at different states of charge indicates independence of thermal impedance on charging state of battery. It is shown that thermal impedance spectrum can be used to obtain simultaneously thermal capacity and thermal conductivity of battery by non-linear complex least-square fit of the spectrum to thermal impedance model. Obtained data is used to simulate a response of the battery to internal heating during discharge. It is found that temperature inside the battery is by one-third larger that on its surface. This observation has to be considered to prevent damage by overheating.

  • PDF

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.

Speedy Two-Step Thermal Evaporation Process for Gold Electrode in a Perovskite Solar Cell

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.235-240
    • /
    • 2018
  • We propose a speedy two-step deposit process to form an Au electrode on hole transport layer(HTL) without any damage using a general thermal evaporator in a perovskite solar cell(PSC). An Au electrode with a thickness of 70 nm was prepared with one-step and two-step processes using a general thermal evaporator with a 30 cm source-substrate distance and $6.0{\times}10^{-6}$ torr vacuum. The one-step process deposits the Au film with the desirable thickness through a source power of 60 and 100 W at a time. The two-step process deposits a 7 nm-thick buffer layer with source power of 60, 70, and 80 W, and then deposits the remaining film thickness at higher source power of 80, 90, and 100 W. The photovoltaic properties and microstructure of these PSC devices with a glass/FTO/$TiO_2$/perovskite/HTL/Au electrode were measured by a solar simulator and field emission scanning electron microscope. The one-step process showed a low depo-temperature of $88.5^{\circ}C$ with a long deposition time of 90 minutes at 60 W. It showed a high depo-temperature of $135.4^{\circ}C$ with a short deposition time of 8 minutes at 100 W. All the samples showed an ECE lower than 2.8 % due to damage on the HTL. The two-step process offered an ECE higher than 6.25 % without HTL damage through a deposition temperature lower than $88^{\circ}C$ and a short deposition time within 20 minutes in general. Therefore, the proposed two-step process is favorable to produce an Au electrode layer for the PSC device with a general thermal evaporator.