• 제목/요약/키워드: Thermal Damage

검색결과 919건 처리시간 0.024초

터널 화재(Modified Hydrocarbon Curve)시콘크리트에 매입된 강재의 열적 손상 평가 (Evaluation on the Thermal Damage of Steel Embedded in Concrete in Tunnel Fire(Modified Hydrocarbon Curve))

  • 박경훈;김흥열;김형준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.485-488
    • /
    • 2008
  • 터널 화재시 화재강도는 매우 높으며 터널 내부에서 화재 발생은 높은 화재강도에 의해 구조요소인 숏크리트 및 콘크리트 라이닝의 화재 노출표면에서 폭열 발생을 유발시키는 동시에 터널 안정에 있어 중요한 역할을 수행하는 앵커 등의 터널에 매입된 강재 또한 고온의 노출로 인한 열전달로 급격한 응력감소가 발생하게 된다. 따라서 본 실험에서는 화재강도(Modified Hydrocarbon Curve)와 매입된 강재의 내화 유무를 변수로 정하여 콘크리트 라이닝의 내부에 매입된 강재의 열전도를 알아보기 위한 화재시험을 수행하였다. 또한 최근 ITA(International Tunneling Association)에서 연구한 도로 터널내화구조 기준에 따라 강재의 열손상 임계 온도범위를 산정하여 열적 손상 정도를 평가하였다.

  • PDF

HIFU: 현황 및 기술적 동향 (High Intensity Focused Ultrasound for Cancer Treatment: Current Agenda and the Latest Technology Trends)

  • 서종범
    • The Journal of the Acoustical Society of Korea
    • /
    • 제29권2E호
    • /
    • pp.55-63
    • /
    • 2010
  • High Intensity Focused Ultrasound (HIFU) is a noninvasive surgical method mainly targeting deeply located cancer tissue. Ultrasound is generated from an extemally located transducer and the beam is focused at the target volume, so that selective damage can be achieved without harm to overlying or surrounding tissues. The mechanism for cell killing can be combination of thermal and cavitational damage. Although cavitation can be an effective means of tissue destruction, the possibility of massive hemorrhage and the unpredictable nature of cavitational events prevent clinical application of cavitation. Hence, thermal damage has been a main focus related to HIFU research. 2D phased array transducer systems allow electronic scanning of focus, multi-foci, and anti-focus with multi-foci, so that HIFU becomes more applicable in clinical use. Currently, lack of noninvasive monitoring means of HIFU is the main factor to limit clinical applications, but development in MRI and Ultrasound Imaging techniques may be able to provide solutions to overcome this problem. With the development of advanced focusing algorithm and monitoring means, complete noninvasive surgery is expected to be implemented in the near future.

Mechanical deterioration and thermal deformations of high-temperature-treated coal with evaluations by EMR

  • Biao Kong;Sixiang Zhu;Wenrui Zhang;Xiaolei Sun;Wei Lu;Yankun Ma
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.233-244
    • /
    • 2023
  • With the increasing amount of resources required by the society development, mining operations go deeper, which raises the requirements of studying the effects of temperature on the physical and mechanical properties of coal and adjacent rock. For now, these effects are yet to be fully revealed. In this paper, a mechanical-electromagnetic radiation (EMR) test system was established to understand the mechanical deterioration characteristics of coal by the effect of thermal treatment and its deformation and fracture characteristics under thermo-mechanical coupling conditions. The mechanical properties of high-temperature-treated coal were analyzed and recorded, based on which, reasons of coal mechanical deterioration as well as the damage parameters were obtained. Changes of the EMR time series under unconstrained conditions were further analyzed before characteristics of EMR signals under different damage conditions were obtained. The evolution process of thermal damage and deformation of coal was then analyzed through the frequency spectrum of EMR. In the end, based on the time-frequency variation characteristics of EMR, a method of determining combustion zones within the underground gasification area and combustion zones' stability level was proposed.

FEM을 이용한 벤틸레이티드 브레이크 디스크의 열균열 현상에 관한 연구 (A Study on Thermal Cracking of Ventilated Brake Disk of a Car Using FEM Analysis)

  • 김호경;정진성;최명일;이영인
    • Tribology and Lubricants
    • /
    • 제21권2호
    • /
    • pp.63-70
    • /
    • 2005
  • This study presents the thermal cracking on a commercial vehicle ventilated brake disk. Distributions of temperature and thermal stress of the disk were analysed, using FEM analysis, under the several driving conditions with actual vehicle specifications. The results from the fatigue tests on the disk material were compared with those from FEM analysis. In case of deceleration of 0.6 g with initial vehicle speed of 97, 140, and 160 km/h, the maximum compressive stress at the disk surface of disk due to braking was 224, 318, and 362 MPa, respectively. It was estimated that each damage fraction of 0.00005, 0.00050, 0.00136 per full stop was imposed on the brake disk in case of deceleration of 0.6 g with initial vehicle speed of 97, 140, and 160 km/h, respectively.

액체금속로 Y-구조물의 비탄성 열응력 해석 및 손상평가에 관한 유한요소해석 (Finite element analysis of inelastic thermal stress and damage estimation of Y-structure in liquid metal fast breeder reactor)

  • 곽대영;임용택;김종범;이형연;유봉
    • 대한기계학회논문집A
    • /
    • 제21권7호
    • /
    • pp.1042-1049
    • /
    • 1997
  • LMFBR(Liquid Metal Fast Breeder Reactor) vessel is operated under the high temperatures of 500-550.deg. C. Thus, transient thermal loads were severe enough to cause inelastic deformation due to creep-fatigue and plasticity. For reduction of such inelastic deformations, Y-piece structure in the form of a thermal sleeve is used in LMFBR vessel under repeated start-up, service and shut-down conditions. Therefore, a systematic method for inelastic analysis is needed for design of the Y-piece structure subjected to such loading conditions. In the present investigation, finite element analysis of heat transfer and inelastic thermal stress were carried out for the Y-piece structure in LMFBR vessel under service conditions. For such analysis, ABAQUS program was employed based on the elasto-plastic and Chaboche viscoplastic constitutive equations. Based on numerical data obtained from the analysis, creep-fatigue damage estimation according to ASME Code Case N-47 was made and compared to each other. Finally, it was found out that the numerical predictio of damage level due to creep based on Chaboche unified viscoplastic constitutive equation was relatively better compared to elasto-plastic constitutive formulation.

Inconel 625 용사코팅된 절탄기 핀튜브의 전기화학적 내식성 분석 (Analysis of Electrochemical Corrosion Resistance of Inconel 625 Thermal Spray Coated Fin Tube of Economizer)

  • 박일초;한민수
    • 해양환경안전학회지
    • /
    • 제27권1호
    • /
    • pp.187-192
    • /
    • 2021
  • 본 연구는 절탄기 튜브의 저온부식 손상을 방지하기 위해 Inconel 625 용사재료를 활용하여 아크 열용사 코팅기술 적용 후 실링처리를 실시하였다. 용사코팅(TSC) 층의 내식성 분석을 위해 0.5 wt% 황산 수용액에서 다양한 전기화학적 실험을 진행하였다. 양극분극 실험 후에는 주사전자현미경과 EDS 성분분석을 통해 부식 손상 정도를 파악하였다. 자연전위 계측 시 TSC+실링처리(TSC+Sealing)의 안정적인 전위 형성을 통해 실링처리 효과를 확인하였다. 양극분극 실험 결과 TSC와 TSC+Sealing에서 부동태 영역이 확인되었으며, 부식 손상 역시 관찰되지 않아 내식성이 개선되었다. 더불어 타펠분석에 의해 산출된 부식전위와 부식전류밀도 분석 결과 TSC+Sealing의 내식성이 가장 우수하게 나타났다.

자가치료용 마이크로캡슐의 열적 안정성 연구 (Thermal Stability of Autonomic Microcapsules with Healing Agent)

  • 박희원;윤성호;홍순지;이종근
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.65-68
    • /
    • 2002
  • This study dealt with autonomic microcapsules with the healing agent for damage repair of the composite structures. Autonomic microcapsules were made of a urea-formaldehyde resin for shell of microcapsule and a DCPD for the healing agent. Thermal analysis was conducted by using a DSC and a TGA for the healing agent, microcapsules without the healing agent, and microcapsules with the healing agent. According to the results, autonomic microcapsules were verified to be so thermally stable that the healing agent was kept inside the microcapsule until the shell of microcapsules were burned out.

  • PDF

동절기 매트기초공사시 콘크리트의 초기동해방지 및 온도충격제어에 관한 해석적 연구 (An Analytic Study on Early aged Freezing Damage Prevention and Thermal Crack Control of Concrete in Cold-Weathering Mat Foundation Construction)

  • 이도범;김효락;박지훈;최일호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.807-812
    • /
    • 2001
  • This study is peformed for checking the limitation and application of each curing/heating methods on cold-weathering mat foundation construction, considering temperature control, early strength security and temperature declination range limit, by means of concrete material properties and thermal analysis technique that were published previously. In the result of this analysis, we checked the open air temperature and mat depth that are possible to apply each curing/heating methods on cold-weathering construction and found curing/heating time of each methods that is able to prevent early aged freezing damage and thermal crack

  • PDF

Ginsenoside Rg5 prevents apoptosis by modulating heme-oxygenase-1/nuclear factor E2-related factor 2 signaling and alters the expression of cognitive impairment-associated genes in thermal stress-exposed HT22 cells

  • Choi, Seo-Yun;Kim, Kui-Jin;Song, Ji-Hyeon;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.225-228
    • /
    • 2018
  • Our results suggested that thermal stress can lead to activation of hippocampal cell damage and reduction of memory-associated molecules in HT22 cells. These findings also provide a part of molecular rationale for the role of ginsenoside Rg5 as a potent cognitive impairment preventive compound in blocking the initiation of hippocampal damage.

Effect of coating thickness on contact fatigue and wear behavior of thermal barrier coatings

  • Lee, Dong Heon;Jang, Bin;Kim, Chul;Lee, Kee Sung
    • Journal of Ceramic Processing Research
    • /
    • 제20권5호
    • /
    • pp.499-504
    • /
    • 2019
  • The effect of coating thickness on the contact fatigue and wear of thermal barrier coatings (TBCs) are investigated in this study. The same bondcoat material thickness (250 ㎛) are used for each sample, which allows the effect of the coating thickness of the topcoat to be investigated. TBCs with different coating thicknesses (200, 400, and 600 ㎛) are prepared by changing processing parameters such as the feeding rate of the feedstock, spraying speed, and spraying distance during APS(air plasma spray) coating. The damage size on the surface are strongly affected by the coating thickness effect. Although the damage size from contact fatigue using a spherical indenter diminish at a TBC of 200 ㎛, a high wear resistance such as a low friction coefficient and little mass change are found at a TBC of 600 ㎛. These results indicate that the coating thickness strongly affects the mechanical behavior in TBCs during gas turbine operation.