• Title/Summary/Keyword: Thermal Creep

Search Result 258, Processing Time 0.031 seconds

The origins and evolution of cement hydration models

  • Xie, Tiantian;Biernacki, Joseph J.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.647-675
    • /
    • 2011
  • Our ability to predict hydration behavior is becoming increasingly relevant to the concrete community as modelers begin to link material performance to the dynamics of material properties and chemistry. At early ages, the properties of concrete are changing rapidly due to chemical transformations that affect mechanical, thermal and transport responses of the composite. At later ages, the resulting, nano-, micro-, meso- and macroscopic structure generated by hydration will control the life-cycle performance of the material in the field. Ultimately, creep, shrinkage, chemical and physical durability, and all manner of mechanical response are linked to hydration. As a way to enable the modeling community to better understand hydration, a review of hydration models is presented offering insights into their mathematical origins and relationships one-to-the-other. The quest for a universal model begins in the 1920's and continues to the present, and is marked by a number of critical milestones. Unfortunately, the origins and physical interpretation of many of the most commonly used models have been lost in their overuse and the trail of citations that vaguely lead to the original manuscripts. To help restore some organization, models were sorted into four categories based primarily on their mathematical and theoretical basis: (1) mass continuity-based, (2) nucleation-based, (3) particle ensembles, and (4) complex multi-physical and simulation environments. This review provides a concise catalogue of models and in most cases enough detail to derive their mathematical form. Furthermore, classes of models are unified by linking them to their theoretical origins, thereby making their derivations and physical interpretations more transparent. Models are also used to fit experimental data so that their characteristics and ability to predict hydration calorimetry curves can be compared. A sort of evolutionary tree showing the progression of models is given along with some insights into the nature of future work yet needed to develop the next generation of cement hydration models.

Early age behavior analysis for reinforced concrete bridge pier

  • Wang, Xianfeng;Li, Dawang;Han, Ningxu;Xing, Feng
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1041-1051
    • /
    • 2016
  • In this study, the construction of a reinforced concrete bridge pier was analyzed from durability point of view. The goal of the study is to analyze the crack iniation condition due to construction and present some recommendations for construction conditions of the reinforced concrete bridge pier. The bridge is located at the western port area of Shenzhen, where the climate is high temperature and humidity. To control the cracking of concrete, a construction simulation was carried out for a heat transfer problem as well as a thermal stress problem. A shrinkage model for heat produced due to cement hydration and a Burger constitutive model to simulate the creep effect are used. The modelling based on Femmasse(C) is verified by comparing with the testing results of a real underground abutment. For the bridge pier, the temperature and stress distribution, as well as their evolution with time are shown. To simulate the construction condition, four initial concrete temperatures ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$) and three demoulding time tips (48h, 72h, 96h) are investigated. From the results, it is concluded that a high initial concrete temperature could result in a high extreme internal temperature, which causes the early peak temperature and the larger principle stresses. The demoulding time seems to be less important for the chosen study cases. Currently used 72 hours in the construction practice may be a reasonable choice.

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.

The Sag Behavior of STACIR/AW $410mm^2$ Power Line (STACIR/AW $410mm^2$ 송전선의 이도거동)

  • Park, Su-Dong;Kim, Byung-Geol;Kim, Shang-Shu;Lee, Hee-Woong;Jang, Tae-In;Kang, Ji-Won;Lee, Dong-Il;Min, Byung-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1262-1265
    • /
    • 2004
  • 송전용량 증가를 위해 개발되어 최근 본격적으로 사용되고 있는 STACIR/AW 송전선은 송전용량의 증가에 따라 그 운전환경도 변화하여 연속사용온도의 경우, 기존 ACSR 전선의 90t에 비해 높은 $210^{\circ}C$로 규정 되어 있을 만큼 고온에서 운전되고 있다. 따라서 STACIR/AW 송전선은 이도설계와 그 운용에 있어서 운전 온도 상승에 따른 각별한 주의관리가 필요하다 실제 STACIR/AW송전선은 그 설계단계에서도 이와 같은 고온운전 환경을 고려하여 고온에서도 소정강도를 유지하는 내열 Al도체와 이도제어를 위한 낮은 열팽창 특성의 INVAR합금(Fe-35Ni계 합금)을 강선으로 하는 특화된 재료로 구성되어 있다. 그러나 이와 같은 재료 설계적 보완책에도 불구하고 실제 송전선은 전선의 자중, 철탑 간에 형성된 가설장력과 같은 다양한 응력이 고온환경에서 부하되는 복합 열화 상태에 노출되어 있고, 이것은 재료학적인 관점에서 크릴 변형 발생의 가능성을 높이고 있으나 이것에 대한 연구 또는 실험결과는 크게 미미한 실정이다. 본 연구에서는 STACIR/AW $410mm^2$ 송전선과 그 구성소재를 대상으로 $200^{\circ}C$, $300^{\circ}C$에서 장시간 열화한 후, 구성소재의 탄성계수, 열팽창계수 및 STACIR/AW전선의 크림변형 거동을 조사하여 열화에 노출된 STACIR/AW 송전선의 이도변화 거동을 규명하고자 하였다.

  • PDF

ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$ Based Ceramics Varistors with High Stability under d.c. stress (d.c. 스트레스에 높은 안정성을 갖는 ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$계 세라믹 바리스터)

  • Park, Choon-Hyun;Yoon, Han-Soo;Nahm, Choon-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1003-1007
    • /
    • 1999
  • This paper is reported for the stability of ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$ based ceramic varistors with $Er_{2}O_{3}$ added in the addition range 0.0 to 2.0 mol%. The varistors sintered at $130^{\circ}C$ exhibited abrupt positive current creep phenomena, which accompany thermal run away within short times, even under weak d.c. stress. As a result, these varistors were completely degraded. On the contrary, the stability of varistors sintered at $1350^{\circ}C$ was far better than that of $1300^{\circ}C$. In particular, the varistor containing 0.5 mol% $Er_{2}O_{3}$ showed a excellent stability, which the variation rate of the varistor voltage, the nonlinear coefficient, and leakage current is below 1%, 2%, and 3.5%, respectively, even under more severe d.c. stress, such as ($0.8V_{1mA}/90^{\circ}C/12h$) + ($0.85V_{1mA}/115^{\circ}C/12h$) + ($0.9V_{1mA}/120^{\circ}C/12h$) + ($0.9V_{1mA}/150^{\circ}C/12h$). Consequently, it is estimated that the basic composition of ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$ based varistor contain 0.5 mol% $Er_{2}O_{3}$ will be used to the fabrication of the varistors for high performance and stability in a forthcoming.

  • PDF

Characteristics of Shear Strength for joined SiC-SiC Ceramics (SiC세라믹스 동종재 접합재의 전단강도 특성 평가)

  • Yoon, Han Ki;Jung, Hun Chea;Hinoki, T.;Kohyama, A.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.483-487
    • /
    • 2014
  • In this study, joining methods with SiC powder as the joining adhesives were studied in order to avoid the residual stresses coming from CTE (Coefficient of Thermal Expansion) mismatch between substrate and joining layer. The shear strength and microstructure of joined material between SiC substrates are investigated. The commercial Hexoloy-SA (Saint-Gobain Ceramics, USA) used in this work as substrate material. The fine ${\beta}$-SiC nano-powder which the average particle size is below 30 nm, $Al_2O_3$, $Y_2O_3$, and $SiO_2$ were used as joining adhesives. The specimens were joined with 20MPa and $1400-1900^{\circ}C$ by hot pressing in argon atmosphere. The shear test was performed to investigate the bonding strength. The cross-section of the joint was characterized by using an optical microscope and scanning electron microscopy (SEM).

Study on the Improvement of Weld-joint Reliability in Waterwall Tubes of the Ultra Supercritical Coal Fired Boiler (석탄화력발전용 초초임계압(USC) 보일러 수냉벽 튜브 용접 신뢰성 향상에 대한 연구)

  • Ahn, Jong-Seok;Lee, Seung-Hyun;Cho, Sang-Kie;Lee, Gil-Jae;Lee, Chang-Hee;Moon, Seung-Jae
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The low alloy-steel material(1.0Cr-0.5Mo, SA213T12), which has widely been used for the waterwall tube in the conventional power plant, do not have enough creep rupture strength for waterwall tubes of the Ultra-supercritical(USC) boilers. According to this reason, the high-strength low alloy-steel(2.25Cr-1.0Mo, SA213T22) has newly been adopted for the waterwall tube in the USC boilers. This paper presents failure analysis on weld-joint of the waterwall tubes in USC boilers. Visual inspections were performed to find out the characteristics of the fracture. Additionally both microscopic characteristics and hardness test were carried out on failed tube samples. Failures seem to happen mainly because the welding process has not been conducted strictly.(preheating, P.W.H.T and so forth). Thus, this paper has the purpose to describe the main cause of the poor welding process and to explain how to prevent similar failures in those weld-joints.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

An Experimental Study on Mechanic properties of Hardened Fly-ash (플라이애쉬 경화체의 역학적 특성에 관한 실험적 연구)

  • Jo, Byung-Wan;Kim, Yeung-Jin;Park, Jong-Bin
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.134-138
    • /
    • 2003
  • The purpose of this paper is to recycle the fly ash to the valuable resources and settle environment problems which was caused by the fly ash produced from the thermal power plant. Making the fly ash-cement matrix reused fly ash in large quantities, we looked into minutely the physical properties - the elastic modulus, the compressive strength - to increase the usefulness as the building materials for the structure widely. In this paper, the variables are the water-binder(39, 42, 45%), the fine aggregate ratio(37, 41, 45%). Because the fracture energy is influenced by the strength, it is showed to decrease with the increase of W/B and S/a. Besides, we will be able to know that basic properties of the fly ash-cement matrix are similar to that of concrete. But, it is needed to carry out durability experiment on the drying shrinkage, creep, freezing and thawing test to use structural materials.

  • PDF

Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum (구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo)

  • Bang, Woong-Ho;Kang, Choon-Sik;Park, Jae-Hyun;Kweon, Young-Gak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF