• 제목/요약/키워드: Thermal Crack

검색결과 736건 처리시간 0.026초

Effect of Hydride Reorientation on Delayed Hydride Cracking In Zr-2.5Nb Tubes

  • Yun Yeo Bum;Kim Young Suk;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.529-536
    • /
    • 2003
  • The objective of this study is to investigate the reorientation of hydrides with applied stress intensity factor, the peak temperature and the time when to apply the stress intensity factor in a Zr-2.5Nb pressure tube during its thermal cycle treatment. Cantilever beam (CB) specimens with a notch of 0.5 mm in depth made from the Zr-2.5Nb tube were subjected to electrolytic hydrogen charging to contain 60 ppm H and then to a thermal cycle involving heating to the peak temperature of either 310 or $380^{\circ}C$, holding there for 50 h and then cooling to the test temperature of $250^{\circ}C$. The stress intensity factor of either 6.13 or $18.4\;MPa\sqrt{m}$ was applied at the beginning of the thermal cycle, at the end of the hold at the peak temperatures and after cooling to the test temperature, respectively. The reorientation of hydrides in the Zr-2.5Nb tube was enhanced with the increased peak temperature and applied stress intensity factor. Furthermore, when the CB specimens were subjected to $18.4\;MPa\sqrt{m}$ from the beginning of the thermal cycle, the reoriented hydrides occurred almost all over the Zr-2.5Nb tube, surprisingly suppressing the growth of a DHC crack. In contrast, when the CB specimens were subjected to the stress intensity factor at the test temperature, little reorientation of hydrides was observed except the notch region, leading the Zr-2.5Nb to grow a large DHC crack. Based on the correlation between the reorientation of hydrides and the DHC crack growth, a governing factor for DHC is discussed along with the feasibility of the Kim's DHC model.

인천 LNG지하탱크 Sidewall의 온도균열제어 (Temperature Crack Control about Sidewall of LNG in Inchon)

  • 구본창;김동석;하재담;김기수;최롱;최웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.329-332
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as underground box structure, mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The objective of this paper is largely two folded. Firstly we introduce the cracks control technique by employing low-heat cement mix and thermal stress analysis. Secondly it show the application condition of the cracks control technique like sidewall of LNG in Inchonl.

  • PDF

이중조직을 갖는 Y-TZP/Y-TZP-$Al_2O_3$ 복합체의 열충격 거동 (The Thermal Shock Behaviors of Y-TZP/Y-TZP-Al2O3 Composites having Dual Microstructure)

  • 황규홍;김의훈;김환
    • 한국세라믹학회지
    • /
    • 제29권4호
    • /
    • pp.283-292
    • /
    • 1992
  • Duplex composites such as Y-TZP/Y-TZP-20 wt.% Al2O3 and Y-TZP/Y-TZP- 40 wt.% Al2O3 were made by mixing the sieve-shaked granules followed by isostatic pressing and sintering at 150$0^{\circ}C$ for 1 hour. So Y-TZP became matrix region and Y-TZP-20 wt.% Al2O3 or Y-TZP-40 wt.% Al2O3 became dispersed regions. In these composites, propagating cracks due to thermal shock always run into the dispersed region because these regions act as compressive zone due to low thermal expansion than matrix region. So duplexes having dispersed regions of Y-TZP-40 wt.% Al2O3 showed higher retained strength after thermal shock than matrix only composites because crack propagations were stopped more or less in the dispersed region. But when crack propagations were much more easy than matrix like Y-TZP-20 wt.% Al2O3 region, retained strength was decreased than the matrix only composites despite of the low initial strength.

  • PDF

지하철 박스 구조물에서의 온도균열제어 (Temperature Crack Contol in Subway Box Structures)

  • 구본창;김동석;하재담;김기수;최롱;오병환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.293-298
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as underground box structure, mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The objective of this paper is largely two folded. Firstly we introduce the cracks control technique by employing low-heat cement mix and thermal stress analysis. Secondly it show the application condition of the cracks control technique like the subway structure in Seoul.

  • PDF

고온관 누설에 의한 가압열충격 사고시 원자로 용기의 건전성 평가를 위한 결정론적 파괴역학 해석 (Deterministic Fracture Mechanics Analysis of Nuclear Reactor Pressure Vessel Under Rot Leg Leak Accident)

  • 이상민;최재붕;김영진;박윤원;정명조
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2219-2227
    • /
    • 2002
  • In a nuclear power plant, reactor pressure vessel (RPV) is the primary pressure boundary component that must be protected against failure. The neutron irradiation on RPV in the beltline region, however, tends to cause localized damage accumulation, leading to crack initiation and propagation which raises RPV integrity issues. The objective of this paper is to estimate the integrity of RPV under hot leg leaking accident by applying the finite element analysis. In this paper, a parametric study was performed for various crack configurations based on 3-dimensional finite element models. The crack configuration, the crack orientation, the crack aspect ratio and the clad thickness were considered in the parametric study. The effect of these parameters on the maximum allowable nil-ductility transition reference temperature ($(RT_{NDT})$) was investigated on the basis of finite element analyses.

KDX-II급 함정 수직발사대 선체 균열발생에 따른 보강방안 연구 (A Study on the Retrofit measures for KDX-II KVLS Hull Crack)

  • 최상민;최준호
    • 품질경영학회지
    • /
    • 제45권3호
    • /
    • pp.393-401
    • /
    • 2017
  • Purpose: The purpose of this study is to propose retrofit measures for KDX-II KVLS hull crack, also, enhance safety and quality of ship. Also, this study suggest to how to retrofit about hull crack of the ship and how to improve operability of the ship. Methods: Retrofit measures of KDX-II KVLS hull crack reach a conclusion through global structure analysis and fatigue analysis. Concerned about thermal deformation due to welding around the KVLS, in addition to, verify to safety of KVLS. Results: Based on result of global structure analysis establish retrofit measures for KDX-II KVLS hull crack. Additionally, through fatigue analysis establish final retrofit measures. The results of retrofit measures are allowed both stress level and fatigue life. Conclusion: Retrofit measures for ship hull crack based on global structure analysis and fatigue analysis improves operability and quality of the ship. Especially, KDX-II ship is the best battleship in our country. Considering the importance of KDX-II, this study improves both Korea navy's combat power and ability to carry out the mission.

Thermal Fatigue Test of an Annular Structure

  • Hwang Jeong-Ki;Suh Chang-Min;Kim Chae-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.59-65
    • /
    • 2006
  • A half-scaled large test model for the main components of the real annular structure was built and the thermal behaviors were experimented and obtained by thermal cyclic loads. The model design and the test conditions for the thermal loads were determined to take into consideration the thermal and mechanical loads acting on the real annular structure by finite element analyses. Temperature profiles and strains of the main components of the model were measured at an early stage of the test and periodically throughout the test in the given test conditions. After completion of the thermal cyclic tests, no evidence of crack initiation and propagation were identified by a dye penetration test. The measured strains at the critical parts were slightly increased proportionally with the increase in the number of the thermal cycles.