• Title/Summary/Keyword: Thermal Control Subsystem

Search Result 30, Processing Time 0.025 seconds

THE ORBITAL THERMAL ANALYSIS OF HAUSAT-2 AND ITS THERMAL CONTROL SUBSYSTEM PRELIMINARY DESIGN (HAUSAT-2의 궤도 열해석과 열제어계의 예비설계)

  • Lee Mi-Hyeon;Kim Dong-Woon;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.129-132
    • /
    • 2005
  • This paper describes BAUSAT-2 orbital thermal analysis and preliminary design of thermal control subsystem. To design thermal control subsystem of HAUSAT-2, we have considered active & passive thermal control method based on basic theory and themal equilibrium equation. Using this result, suitable thermal control method and material have been selected. We have designed thermal control subsystem based on analysis of HAUSAT-2's thermal environments on sun synchronous orbit with altitude 650km, inclination $98^{\circ}$ and thermal distribution and range expectation of each HAUSAT-2's surface. Thermal analysis consists of system level, box level and board level analysis. We have completed system level and box level analysis. Till now, board level analysis of main heat dissipation board in progress. Thermal control subsystem has designed according to thermal analysis result. This design is to maintain all of the HAUSAT-2 components within the allowable temperature limits. In future, STM

  • PDF

Development and Performance Validation of Thermal Control Subsystem for Earth Observation Small Satellite Flight Model (지구관측 소형위성 비행모델의 열제어계 개발 및 성능 검증)

  • Chang, Jin-Soo;Jeong, Yun-Hwang;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1222-1228
    • /
    • 2008
  • A small satellite, DubaiSat-1 FM(Flight Model), which is based on SI-200 standard bus platform and scheduled to be launched in 2008, is being developed by Satrec Initiative and EIAST(Emirates Institution for Advanced Science and Technology). The TCS(Thermal Control Subsystem) of DubaiSat-1 FM has been designed to mainly utilize passive thermal control in order to minimize power consumption, but the active control method using heaters has been applied to some critical parts. Also, thermal analysis has been performed for DubaiSat-1's mission orbit using a thermal analysis model. The thermal design is modified and optimized to satisfy the design temperature requirements for all parts according to the analysis result. The thermal control performance of DubaiSat-1 FM is verified by thermal vacuum space simulation, consisting of thermal cycling and thermal balance test. Also, to validate the thermal modeling of DubaiSat-1 FM, comparison of test results with analysis has been performed and model calibration has been completed.

Design and Development of Thermal Control Subsystem for an Electro-Optical Camera System (전자광학카메라 시스템의 열제어계 설계 및 개발)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.798-804
    • /
    • 2009
  • A high-resolution electro-optical camera system, EOS-C, is under development in Satrec Initiative. This system is the mission payload of a 400-kg Earth observation satellite. We designed this system to give improved opto-mechanical and thermal performance compared with a similar camera system to be flown on the DubaiSat-1 system. The thermal control subsystem (TCS) of the EOS-C system uses heaters to meet the opto-mechanical requirements during in-orbit operation and it uses different thermal coating materials and multi-layer insulation (MLI) blankets to minimize the heater power consumption. We performed its thermal analysis for the mission orbit using a thermal analysis model and the result shows that its TCS satisfies the design requirements.

Development and Verification of Thermal Control Subsystem for High Resolution Electro-Optical Camera System, EOS-D Ver.1.0 (고해상도 전자광학카메라 EOS-D Ver.1.0의 열제어계 개발 및 검증)

  • Chang, Jin-Soo;Kim, Jong-Un;Kang, Myung-Seok;Yang, Seung-Uk;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.921-930
    • /
    • 2013
  • Satrec Initiative successfully developed and verified a high-resolution electro-optical camera system, EOS-D Ver.1.0. We designed this system to give improved spatial and radiometric resolution compared with EOS-C series systems. The thermal control subsystem (TCS) of the EOS-D Ver.1.0 uses heaters to meet the opto-mechanical requirements during in-orbit operation and uses different thermal coatings and multi-layer insulation (MLI) blankets to minimize the heater power consumption. Also, we designed and verified a refocusing mechanism to compensate the misalignment caused by moisture desorption from the metering structure. We verified the design margin and workmanship by conducting the qualification level thermal vacuum test. We also performed the verification of thermal math model (TMM) by comparing with thermal balance test results. As a result, we concluded that it faithfully represents the thermal characteristics of the EOS-D Ver.1.0.

Development of ETRI satellite simulator-ARTSS

  • Kang, J.Y.;Lee, S.;Hong, K.Y.;Shin, K.K.;Rhee, S.W.;Choi, W.S.;Oh, H.S.;Kim, J.M.;Chung, S.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.49-53
    • /
    • 1994
  • Advanced Real-Time Satellite Simulator(ARTSS) has been developed to support the telemetry, tracking and command operations of the ETRI satellite control system and to provide satellite engineers a more powerful and informative satellite simulations tool on the desktop. To provide extensive simulation functions for a communication satellite system in the pre-operational and operational missions, ARTSS uses a geosynchronous orbit(GEO) satellite model consisting of the attitude and orbit control subsystem, the power subsystem, the thermal subsystem, the telemetry, command and ranging subsystem, and the communications payload subsystem. In this paper, the system features and functions are presented and the satellite subsystem models are explained in detail.

  • PDF

Design Verification of Thermal Control Subsystem for EOS-C Ver.3.0 using STM Thermal Vacuum Test Result (STM 열진공 시험 결과를 이용한 EOS-C Ver.3.0 열제어계 설계 검증)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1232-1239
    • /
    • 2010
  • A high-resolution electro-optical camera (EOS-C Ver.3.0), the mission payload of an Earth observation satellite, is under development in Satrec Initiative. We designed this system to give improved thermal performance compared with the EOS-C Ver.2.0 which is the main payload of DubaiSat-1 by optimizing the active and passive thermal control design. We developed the Structural-Thermal Model (STM) and verified the design margin by performing the qualification level thermal vacuum test. We also conducted the verification of its Thermal Mathematical Model (TMM) through the thermal balance test. As a result, it was confirmed that TMM faithfully represents the thermal characteristics of the EOS-C Ver.3.0.

Design of a decentralized multilevel control for thermal power plant (발전플랜트의 다단계 분산제어기 설계)

  • 이은호;김석우;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1217-1220
    • /
    • 1996
  • For the purpose of the good tracking to variable load demands of the thermal power plant, a decentralized multilevel control(DMC) scheme is presented. It is applied to the drum type boiler-turbine system which is simplified from Boryung T/P #1,2 model[4]. A linearized model is decomposed into three subsystems by means of linear transformation. Then the DMC based on such subsystem is designed. Simulation using Matlab-Simulink shows that the proposed algorithm works very well to the large step change of power demand.

  • PDF

Development and Design Verification of Thermal Control Subsystem for EOS-C Ver.3.0 Flight Model (EOS-C Ver.3.0 비행모델의 열제어계 개발 및 설계 검증)

  • Chang, Jin-Soo;Yang, Seung-Uk;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.872-881
    • /
    • 2012
  • The Flight Model (FM) of a high-resolution electro-optical camera (EOS-C Ver.3.0), the mission payload of an Earth observation satellite, was successfully developed by Satrec Initiative. We designed it to give improved thermal representatives compared with the Structural-Thermal Model (STM) by optimizing the thermal characteristics based on the STM thermal vacuum test results. We developed the FM and verified the workmanship by performing the acceptance level thermal vacuum test. We also conducted the verification of its Thermal Mathematical Model (TMM) by the thermal balance test. As the result, it was confirmed that TMM faithfully represents the thermal characteristics of the EOS-C Ver.3.0 FM.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

Development of Propulsion Subsystem for KOMPSAST (다목적 실용위성의 추진시스템 개발)

  • 최진철;윤효철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.80-89
    • /
    • 1998
  • Propulsion subsystem transfers KOMPSAT into mission orbit and controls its attitude. Design factor consists of structure safety, electrical circuit design, consumable power estimation of thermal hardwares, damping device design of fuel transient pressure, and system configuration design by considering plume effect from thruster firing. System level analysis should be performed for verification of system design under launch vehicle and orbital environment. Electrical functional test of thermal control hardware, proof pressure test, cleanliness verification test, and internal/external leakage test of fuel feeding system should be carried out for performance estimation of propulsion system. Design and assembly process of propulsion subsystem was depicted and reliability of system was verified by test analysis in this paper.

  • PDF