• Title/Summary/Keyword: Thermal Conductivity at High Temperature

Search Result 344, Processing Time 0.03 seconds

Temporal Brittleness of the Mod.9Cr-1Mo Steel (Mod.9Cr1Mo강에서 발생되는 일시적 취성현상)

  • Hur, Sung-Kang;Gu, Ji-Ho;Shin, Kee-Sam;He, Yincheng;Shin, Jong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.592-595
    • /
    • 2011
  • It is well known that modified 9Cr-1Mo steel has a low thermal expansion and high thermal conductivity with excellent high temperature properties compared to austenitic stainless steel. For these advantages, the steel is very popular for the boiler tube of thermal power plants. Normalizing is commonly utilized to obtain martensite in this steel, which shows an unusual toughness for martensite. However, some accidents related to this steel have been reported recently, opening the necessity for further study. As a particular behavior of the steel, an abrupt drop of the impact value has been identified upon tempering at 750$^{\circ}C$ for about 1 hour. It is well known that $Fe_3C$ forms during autotempering and turns to $Cr_2C$ at an early stage and then transforms to $Cr_{23}C_6$. In this study, the cause of the abrupt drop of the impact value was investigated with an impact test, microstructural observation, nanodiffraction and phase analyses using instruments such as optical and transmission electron microscopes (TEM) with an extraction carbon replica of the carbides. The analyses revealed that the $M_2C$ that formed when retained for about 1 hour at 750$^{\circ}C$ causes a drastic decrease in the mechanical properties. The sharp drop in mechanical properties, however, disappeared as the $M_2C$ transformed into $M_{23}C_6$ with longer retention.

Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes (Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성)

  • 김영완;최병구;안순호
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2000
  • Polymer electrolyte films consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP), LiClO$_3$ and a mixture of ethylene carbonate (EC) and ${\gamma}$-butyrolactone (GBL) were examined in order to obtain the best compromise between high ionic conductivity, homogeniety, dimensional and electrochemical stability. Measurements of ionic conductivity, differential scanning calorimetry and linear sweep voltammetry have been carried out for various compositions. The highest conductivity of 3.8$\times$10$^{-3}$ S$cm^{-1}$ / at 3$0^{\circ}C$ were obtained for a film of 30(PVdF-HFP)+7.8LiClO$_4$+62.2EC/GBL. From the DSC study, it has been found that the PVdF-HFP gels are stable up to 10$0^{\circ}C$, and the salt lowers the melting temperature of crystalline part of PVdF by interacting sensitively with polymer segments. When Lithium metal is in contact with the gel films, it tends to undergo corrosion and the reaction products accumulate resulting in the formation of a passive film on Li electrode. As the aging time progresses, the interfacial resistance increases continuously. Anodic stability is measured to extend up to about 4.5 V vs. Li.

  • PDF

Thermoelectric Properties of Mg3-xZnxSb2 Fabricated by Mechanical Alloying (기계적 합금법으로 제조한 Mg3-xZnxSb2의 열전물성)

  • Kim, In-Ki;Jang, Kyung-Wook;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • $Mg_{3-x}Zn_xSb_2$ powders with x = 0-1.2 were fabricated by mechanical alloying in a planetary ball mill with a speed of 350 rpm for 24 hrs and then hot pressed under a pressure of 70 MPa at 773 K for 2 hrs. It was found that there were systematic shifts in the X-ray diffraction peaks of $Mg_3Sb_2$ (x = 0) toward a higher angle with increasing Zn for both the powder and the bulk sample and finally the phase of $Mg_{1.86}Zn_{1.14}Sb_2$ was formed at the Zn content of x = 1.2. The $Mg_{3-x}Zn_xSb_2$ compounds had nano-sized grains of 21-30 nm for the powder and 28-66 nm for the hot pressed specimens. The electrical conductivity of hot pressed $Mg_{3-x}Zn_xSb_2$ increased with increasing Zn content and temperature from 33 $Sm^{-1}$ for x = 0 to 13,026 $Sm^{-1}$ for x = 1.2 at 323 K. The samples for all the compositions from x = 0 to x = 1.2 had positive Seebeck coefficients, which decreased with increasing Zn content and temperature, which resulted from the increased charge carrier concentration. Most of the samples had relatively low thermal conductivities comparable to the high performance thermoelectric materials. The dimensionless figure of merit of $Mg_{3-x}Zn_xSb_2$ was directly proportional to the Zn content except for the compound with Zn = 1.2 at high temperature. The $Mg_{3-x}Zn_xSb_2$ compound with Zn = 0.8 had the largest value of ZT, 0.33 at 723 K.

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

Beryllium oxide utilized in nuclear reactors: Part II, A systematic review of the neutron irradiation effects

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.408-420
    • /
    • 2023
  • Beryllium oxide (BeO) is being re-emphasized and utilized in Micro Modular Reactors (MMR) because of its prominent nuclear and high temperature properties in recent years. The implications of the research about effects of neutron irradiation on the microstructure and properties of BeO are significant. This article comprehensively reviews the effects of neutron irradiation on BeO and proposes the maximum permissible neutron doses at different temperatures for BeO without cracks in appearance according to the data in the previous literature. This maximum permissible neutron dose value has important reference significance for the experimental study of BeO. The effects of neutron irradiation on the thermal conductivity and flexural strength of BeO are also discussed. In addition, microstructure evolution of irradiated BeO during post-irradiation annealing is summarized. This review article has important implications for the application of BeO in MMR.

Optimum Curing and Full-out Velocity in the Rubber Extrusion Process for Electric Cable Manufacture (전선피복용 고무압출가공 공정의 최적 경화 및 선출 속도)

  • Kim, Duk-Joon;Choi, Sang-Soon;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 1998
  • In electric cable industries, the curing extent of the rubber materials covering the electric cores gives an significant effect on their final performance. The curing extent of rubber is controlled mostly by pull-out velocity of cable in the extrusion process. The final curing extent may be different for different radial positions inside the rubber because of the non-uniform temperature distributions during the curing process. In this contribution, the prediction of curing extent distribution throughout the radial direction of rubber is represented when the cable is passing through the steam curing zone with a fixed pull-out velocity. The prediction of the optimum pull-out velocity for the desired curing extent distribution is also reported. The steady-state heat balance was developed for the curing and cooling processes in which the pull-out rubber was cured by high temperature steam and then cooled by ambient water. A few essential material properties such as density, specific heat, and thermal conductivity were measured to analyze the temperature distribution during the curing and cooling processes. The times to reach 90% curing extent at varying temperatures were measured and used to determine the final cure extent distribution inside the rubber.

  • PDF

An Experimental Study on the Natural Convection Heat Transfer of Air-cooling PEMFC in a Enclosure (밀폐된 공간 내 공랭식 PEMFC의 자연대류 열전달에 대한 실험적 연구)

  • LEE, JUNSIK;KIM, SEUNGGON;SOHN, YOUNGJUN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • This study presents an experiment investigation on natural convection heat transfer of air-cooling Proton exchange membrane fuel cells (PEMFCs) in a enclosure system for unmanned aerial vehicles (UAVs). Considered are replacing fuel cell stack with Aluminum block for heat generating inside a enclosure chamber. The volume ratio of fuel cell stack and chamber for simulation to the actual size of aerial vehicle is 1 to 15. The parameters considered for experimental study are the environmental temperature range from $25^{\circ}C$ to $-60^{\circ}C$ and the block heat input of 10 W, 20 W and 30 W. Effect of the thermal conductivity of the block and power level on heat transfer in the chamber are investigated. Experimental results illustrate the temperature rise at various locations inside the chamber as dependent upon heat input of fuel cell stack and environmental temperature. From the results, dimensionless correlation in natural convection was proposed with Nusselt number and Rayleigh number for designing air-cooling PEMFC powered high altitude long endurance (HALE) UAV.

A Study of Nano-particle Distributions near a Heated Substrate using Molecular Dynamics Simulations (분자동역학을 이용한 열원 주변에서의 나노입자의 분포에 대한 연구)

  • Yi, Taeil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.60-65
    • /
    • 2019
  • Since nanofluids (NFs), which are a mixture of a small amount of nanoparticles and a bulk liquid solvent, were first proposed by Stephen Choi at the Argonne National Lab in 1995, they have been considered for use in many technical studies of power cooling systems and their practical application due to their high thermal conductivity and heat transfer coefficients compared to conventional coolants. Although nanofluids are a well-known form of engineering fluid that show great promise for use in future cooling systems, their underlying physics as demonstrated in experiments remain unclear. One proven method of determining the heat transfer performance of nanofluids is measuring the concentration of nanoparticles in a mixture. However, it is experimentally inefficient to build testbeds to systematically observe particle distributions on a nanoscale. In this paper, we demonstrate the distribution of nanoparticles under a temperature gradient in a solution using molecular dynamics simulations. First, temperature profiles based on substrate temperature are introduced. Following this, the radial pair distribution functions of pairs of nanoparticles, solvents, and substrates are calculated. Finally, the distribution of nanoparticles in different heating regions is determined.

Effect of Sn Doping on the Thermoelectric Properties of P-Type Mg3Sb2 Synthesized by Controlled Melting, Pulverizing Followed by Vacuum Hot Pressing

  • Rahman, Md. Mahmudur;Kim, Il-Ho;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.132-138
    • /
    • 2022
  • Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.

Resistance Distribution in Thin Film Type SFCL Elements with Shunt Layers of Different Thicknes

  • Kim, Hye-Rim;Hyun, Ok-Bae;Lee, Seung-Yup;Yu, Kwon-Kyu;Kim, In-Seon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.41-45
    • /
    • 2003
  • Resistance distribution in thin film type SFCL elements of different shunt layer thickness was investigated. The 300 nm thick film of 2 inch diameter was coated with a gold layer and patterned into 2 mm wide meander lines. The shunt layer thickness was varied by ion milling the shunt layer with Ar ions, and also by having the shunt layer grown in different thickness. The SFCL element was subjected to simulated AC fault current for measurements. It was immersed in liquid nitrogenduring the experiment. The resistance distribution was not affected by the shunt layer thickness at applied voltages that brought the temperature of the elements to similar values. This result could be explained with the concept of heat transfer from the film to the surroundings. The resistance distribution was independent of the shunt layer thickness because thick sapphire substrates of high thermal conductivity dominated the thermal conductance of the elements.