• Title/Summary/Keyword: Thermal Conduction

Search Result 760, Processing Time 0.029 seconds

A Study on the Integrity Assessment of Bare Concrete Bridge Deck based on the Attenuation of Radar Signals (레이더 신호의 감쇠특성을 고려한 일체식 콘크리트 교량 바닥판의 상태평가 방법 고찰)

  • Rhee, Ji-Young;Choi, Jae-Jin;Kim, Hong-Sam;Park, Ko-Eun;Choi, Myeong-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.84-93
    • /
    • 2016
  • The signal characteristic of radar wave on concrete decks is determined by the attenuation of the radar due to the conversion of EM(Electromagnetic) energy to thermal energy through electrical conduction, dielectric relaxation, scattering, and geometric spreading. In this study, it is found that the attenuation of radar signal received on top rebars in bare deck concrete with 2 way travel time shows a general decreasing linear trend because of its same relative permittivity and conductivity. The radar signal after depth-normalization, can then be interpreted as being principally influenced by the content of chlorides penetrating cover concrete, which caused corrosion of rebars in bridge decks.

Electrical properties of $C_{22}$-Quinolium(TCNQ) LB films depending on a type of applied voltage and temperature (인가 전압 형태 및 온도에 따른 $C_{22}$-Quinolium(TCNQ) LB막의 전기적 특성)

  • Song, Il-Seok;Yoo, Deok-Son;Kim, Young-Kwan;Kim, Tae-Wan;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1193-1196
    • /
    • 1993
  • Electrical properties of $C_{22}$-Quinolium(TCNQ) Langmuir-Blodgett(LB) films are reported depending on a type of applied voltage on a type of applied voltage and temperature. A conductivity was identified to be anisotropic with a ratio of ${\sigma}||/{\sigma}{\bot}{\simeq}10^7$ at room temperature. The I-V characteristics along the film surface direction show an ohmic behavior up to a few hundred volts. But the I-V characteristics in the vertical direction display an ohmic behavior for low-electric field, and a nonohmic behavior for high-electric field. This nonohmic behavior has already been interpreted as a conduction mechanism of space-charge limited current and Schottky effect near the electric-field strengh of $10^6$ V/cm. When the electric field exceeds further, there is anormalous phenomia similiar to breakdown. From the study of I-V characteristics with the application of step or pulse voltage, we have found that the breakdown voltage shifts to higher one as the step or pulse interval becomes shorter. These results indicate that the breakdown is due to both electrical and thermal effect. To see the infulence of temperature, current was measured as function of temperature with several bias voltages, which are lower than that of breakdown. It shows that the current increases about 3 orders of magnitude near $60{\sim}70^{circ}C$, and remains constant for a while up to $140^{\circ}C$ and then suddenly drops. Arahidic acid was used to cmpare with $C_{22}$-Quinolium(TCNQ) LB films.

  • PDF

GaN를 기반으로 하는 고분자 MDMO-PPV의 두께 변화와 온도에 따른 Photovoltaics의 효율 측정

  • Lee, Sang-Deok;Lee, Chan-Mi;Gwon, Dong-O;Sin, Min-Jeong;Lee, Sam-Nyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.305-305
    • /
    • 2013
  • 태양전지는 무기태양전지와 유기태양전지 등이 연구 되고 있는데 [1] 그 중 유기물질의 장점(높은 수율, solution phase processing, 저비용으로 전력 생산)과 무기재료의 장점(높은 전자 이동도, 넓은 흡수 범위, 우수한 환경 및 열 안정성)을 융합함으로써 장기적 구조안정성의 확보와 광전변환의 고 효율화를 동시에 달성하기 위한 유기무기 하이브리드 태양전지가 최근 큰 관심을 끌고 있다[2]. 본 연구에서는 hybrid photovoltaics에 유기물 MDMO-PPV와 전도성 고분자 PEDOT:PSS를 무기물 GaN 위에 spin coating 하여 두께에 다른 효율을 측정하였다. 유기물 MDMO-PPV는 p-형으로 클로로벤젠, 톨루엔과 같은 유기 용매에 잘 녹으며 HOMO 5.33eV, LUMO 2.97eV, energy band gap 2.4eV이며 99.5%의 순도 물질을 사용하였다. 또한 정공 수송층(hole transport layer, HTL)으로 PEDOT:PSS를 사용하였으며, HOMO 5.0eV, LUMO 3.6eV, energy band gap 1.4eV를 가지며 증류수나 에탄올과 같은 수용성 용매에 잘 녹는 특성을 가지고 있다. 무기물은 III-V 족 물질 n-GaN(002)을 사용하였고 valence band energy 1.9eV, conduction band energy 6.3eV, energy band gap 3.4eV, 높은 전자 이동도와 높은 포화 속도, 광전자 소자에 유리한 광 전기적 특성을 가지고 있다. 기판으로는 GaN와 격자 부정합도와 열팽창계수 부정합도가 큰 Sapphire (Al2O3) 이종 기판을 사용하였다. 전극으로 Au를 사용하였으며 E-beam증착하였다. Reflector로서 Al를 thermal evaporator로 증착하였다 [3]. 실험 과정은 두께에 따른 효율을 알아보기 위해 MDMO-PPV를 900~1,500 rpm으로 spin coating 하였고, 열처리에 따른 효율을 알아보기 위해 열처리 온도 조건을 $110{\sim}170^{\circ}C$의 변화를 주었다. FE-SEM으로 표면과 단면을 관찰하였으며 J-V 특성을 알아보기 위해 각 샘플마다 solar simulator를 사용하여 측정하였고 그 결과를 논의하였다.

  • PDF

Micro Joining Process Using Solderable Anisotropic Conductive Adhesive (Solderable 이방성 도전성 접착제를 이용한 마이크로 접합 프로세스)

  • Yim, Byung-Seung;Jeon, Sung-Ho;Song, Yong;Kim, Yeon-Hee;Kim, Joo-Heon;Kim, Jong-Min
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.73-73
    • /
    • 2009
  • In this sutdy, a new class ACA(Anisotropic Conductive Adhesive) with low-melting-point alloy(LMPA) and self-organized interconnection method were developed. This developed self-organized interconnection method are achieved by the flow, melting, coalescence and wetting characteristics of the LMPA fillers in ACA. In order to observe self-interconnection characteristic, the QFP($14{\times}14{\times}2.7mm$ size and 1mm lead pitch) was used. Thermal characteristic of the ACA and temperature-dependant viscosity characteristics of the polymer were observed by differential scanning calorimetry(DSC) and torsional parallel rheometer, respectively. A electrical and mechanical characteristics of QFP bonding were measured using multimeter and pull tester, respectively. Wetting and coalescence characteristics of LMPA filler particles and morphology of conduction path were observed by microfocus X-ray inspection systems and cross-sectional optical microscope. As a result, the developed self-organized interconnection method has a good electrical characteristic($2.41m{\Omega}$) and bonding strength(17.19N) by metallurgical interconnection of molten solder particles in ACA.

  • PDF

Ferromagnetism and Anomalous Hall Effect in p-Zn0.99Mn0.01O:P

  • Kim, Hyun-Jung;Sim, Jae-Ho;Kim, Hyo-Jin;Hong, Soon-Ku;Kim, Do-Jin;Ihm, Young-Eon;Choo, Woong-Kil
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.95-98
    • /
    • 2005
  • We report hole-induced ferromagnetism in diluted magnetic semiconductor $Zn_{0.99}Mn_{0.01}$ films grown on $SiO_2/Si$ substrates by reactive sputtering. The p-type conduction with hole concentration over $10^{18}\;cm^{-3}$ is achieved by P doping followed by rapid thermal annealing at $800^{\circ}C$ in a $N_2$ atmosphere. The p-type $Zn_{0.99}Mn_{0.01}O:P$ is carefully examined by x-ray diffraction and transmission electron microscopy. The magnetic measurements for $p-Zn_{0.99}Mn_{0.01}O:P$ clearly reveal ferromagnetic characteristics with a Curie temperature above room temperature, whereas those for $n-Zn_{0.99}Mn_{0.01}O:P$ show paramagnetic behavior. The anomalous Hall effect at room temperature is observed for the p-type film. This result strongly supports hole-induced room temperature ferromagnetism in $p-Zn_{0.99}Mn_{0.01}O:P$.

Characteristics of Electric Resistance Dual Spot Welding Process of AZ31 Magnesium Alloy Sheets (AZ31 마그네슘 합금 판재의 전기저항 이중 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, an electric resistance dual-spot welding process using a copper electrode inserted in a heating electrode is suggested for the spot welding of AZ31 magnesium sheets. This spot-welding process involves two heating methods for welding at the interfacial zone between the magnesium sheets, one of which is the heating method by thermal conduction from the heating electrode heated by the welding current induced to the steel electrode, and the other heating method uses the electric resistance between the contacted surfaces of the two sheets by the welding current induced to the copper electrode. This welding process includes the welding variables, such as the current induced in the heating electrode and the copper electrode, and the outer diameters of the heating electrode. This is because the heat conducted from the heating electrode can be maintained at a higher temperature in the welding zone, which has a slow cooling effect on the nugget of the melted metal after the welding step. The pressure exerted during the pressing of the magnesium sheets by the heating electrode can be increased around the nugget zone at the spot-welding zone. Thus, it not only reduces the warping effect of the elastoplastic deformation of sheets, but also the corona bond can make it less prone to cracking at the welded zone, thereby reducing the number of nuggets expelled out of the corona bond. In conclusion, it was known that an electric resistance dual spot welding process using the copper electrode inserted in the heating electrode can improve the welding properties in the electric resistance spot welding process of AZ31 magnesium sheets.

Flat Sheet Polybenzimidazole Membranes for Fuel Cell, Gas Separation and Organic Solvent Nanofiltration: A Review (평막형태의 폴리벤지다미졸 분리막의 연료전지, 기체분리막, 유기물분리용 나노여과막으로의 응용: 총설)

  • Anupam Das;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.279-304
    • /
    • 2023
  • Polybenzimidazole (PBI) based membranes have evolved in literature as a popular membrane material for various applications in the past two decades because of their high temperature thermal durability, strong mechanical and tensile properties, high glass transition temperature (Tg), ion conduction ability at elevated temperature (up to 200℃), oxidative or chemical durability along with robust network like structural rigidity, which make PBI membranes suitable for various potential applications in chemically challenging environments. Ion conducting PBI based membranes have been extensively utilized in high temperature proton exchange membrane fuel cells (HT-PEMFC). In addition, PBI based membranes have been vastly utilized for the development of gas separation membranes and organic solvent nanofiltration (OSN) membranes for their unique characteristics. This review will cover the recent progress and application of various types of flat sheet PBI based membranes for HT-PEMFC, gas separation and OSN application.

Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model

  • Linh Ba Vu;Soo-ho Jung;Jinhee Bae;Jong Min Park;Kyung Tae Kim;Injoon Son;Seungki Jo
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2024
  • The n-type Bi2-xSbxTe3 compounds have been of great interest due to its potential to achieve a high thermoelectric performance, comparable to that of p-type Bi2-xSbxTe3. However, a comprehensive understanding on the thermoelectric properties remains lacking. Here, we investigate the thermoelectric transport properties and band characteristics of n-type Bi2-xSbxTe3 (x = 0.1 - 1.1) based on experimental and theoretical considerations. We find that the higher power factor at lower Sb content results from the optimized balance between the density of state effective mass and nondegenerate mobility. Additionally, a higher carrier concentration at lower x suppresses bipolar conduction, thereby reducing thermal conductivity at elevated temperatures. Consequently, the highest zT of ~ 0.5 is observed at 450 K for x = 0.1 and, according to the single parabolic band model, it could be further improved by ~70 % through carrier concentration tuning.

Reduction of Leakage Current and Enhancement of Dielectric Properties of Rutile-TiO2 Film Deposited by Plasma-Enhanced Atomic Lay er Deposition

  • Su Min Eun;Ji Hyeon Hwang;Byung Joon Choi
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.283-290
    • /
    • 2024
  • The aggressive scaling of dynamic random-access memory capacitors has increased the need to maintain high capacitance despite the limited physical thickness of electrodes and dielectrics. This makes it essential to use high-k dielectric materials. TiO2 has a large dielectric constant, ranging from 30~75 in the anatase phase to 90~170 in rutile phase. However, it has significant leakage current due to low energy barriers for electron conduction, which is a critical drawback. Suppressing the leakage current while scaling to achieve an equivalent oxide thickness (EOT) below 0.5 nm is necessary to control the influence of interlayers on capacitor performance. For this, Pt and Ru, with their high work function, can be used instead of a conventional TiN substrate to increase the Schottky barrier height. Additionally, forming rutile-TiO2 on RuO2 with excellent lattice compatibility by epitaxial growth can minimize leakage current. Furthermore, plasma-enhanced atomic layer deposition (PEALD) can be used to deposit a uniform thin film with high density and low defects at low temperatures, to reduce the impact of interfacial reactions on electrical properties at high temperatures. In this study, TiO2 was deposited using PEALD, using substrates of Pt and Ru treated with rapid thermal annealing at 500 and 600 ℃, to compare structural, chemical, and electrical characteristics with reference to a TiN substrate. As a result, leakage current was suppressed to around 10-6 A/cm2 at 1 V, and an EOT at the 0.5 nm level was achieved.

Study on Hot Water Immersion Treatment for Control of Meloidogyne spp. and Pratylenchus spp. in a Ginger, Zingiber officinale (생강에서 뿌리혹선충과 뿌리썩이선충의 사멸을 위한 온탕침지처리 연구)

  • Cho, Donghun;Park, Kyonam;Kim, Yangho;Koh, Kyung-bong;Park, Youngjin
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.171-177
    • /
    • 2017
  • Plant parasitic nematodes, Meloidogyne and Pratylenchus spp., are mostly detected in imported bulbs and tubers including a ginger, Zingiber officinale in Korea by quarantine inspection. However, there is little information on hot water immersion treatment (HWIT) for control of exotic nematodes, which induce economic loss by discard or send back to exporter, in imported gingers. In here, we determined that mortality of two plant parasitic nematodes and thermal stability of ginger. Meloidogyne and Pratylenchus spp. were completely killed at $48^{\circ}C$ and $49^{\circ}C$ for 30 sec by HWIT. Thermal conduction of Z. officinale to reach a target temperature as $50^{\circ}C$ take 10~32 min and 6~16 min for core and inner 5 mm region from surface, respectively. When ginger exposed at $51^{\circ}C$ for 30 min, growth of Z. officinale was not affected by heat treatment compared with control. Based on these results, HWIT at $51^{\circ}C$ for 30 min completely killed artificially infected juveniles of Meloidogyne spp. in Z. officinale. Therefore, this condition for HWIT will be used as fundamental information on phytosanitory to kill two plant parasitic nematodes without damage on ginger.