• Title/Summary/Keyword: Thermal Condition

Search Result 3,164, Processing Time 0.028 seconds

Structural Analysis Comparison of Continuous Casting Mold (연속주조 몰드의 구조해석 비교)

  • 원종진;이종선;홍석주;이현곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.181-187
    • /
    • 2000
  • This study is object to structural analysis comparison of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. For structural analysis using thermal analysis result from ANSYS. In other to structural analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Electron sources for electron microsocpes (전자현미경의 전자원)

  • Cho, Boklae
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.24-28
    • /
    • 2015
  • The brightness of an electron source, along with the aberrations of an objective lens, determines the image resolution and beam current on samples, which are two important parameters for evaluating the performance of an electron microscope. Here we introduce thermal electron source, Schottky emitter and cold field electron emitter. Thermal electron source is the cheapest and stable electron source but it has the lowest brightness. Schottky emitter is 10000 times brighter than tungsten thermal electron source, but requires ultrahigh vacuum operating condition. Cold field electron emitter is 10 times brighter than Schottky emitters, but it is rather unstable and its operation requires most stringent vacuum condition, hindering its widespread use.

Thermal Behavior of Energy Pile Considering Ground Thermal Conductivity and Thermal Interference Between Piles (주변 지반의 열전도도를 고려한 PHC 에너지파일의 열 거동 및 파일 간 열 간섭 현상에 대한 수치해석 연구)

  • Go, Gyu Hyun;Yoon, Seok;Park, Do Won;Lee, Seung-Rae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2381-2391
    • /
    • 2013
  • In general, ground's thermal properties, types of heat exchanger, operational method, thermal interference between piles can be considered as key factors which affect the thermal performance of energy pile. This study focused on the effect of these factors on the performance by a numerical model reflecting a real ground condition. Depending on the degree of saturation of ground, pile's heat transfer rate showed a maximum difference of three times, and the thermal resistance of pile made a maximum difference of 8.7%. As for the type of heat exchanger effects on thermal performance, thermal efficiency of 3U type energy pile had a higher value than those of W and U types. The periodic operation (8 hours operation, 16 hours pause) can preserve about 20% of heat efficiency compared to continuous operation, and hence it has an advantage of preventing the thermal accumulation phenomenon. Thermal interference effect in group piles may vary depending on the ground condition because the extent decreases as the ground condition varies from saturated to dry. The optimal separation distance that maintains the decreasing rate of heat efficiency less than 1% was suggested as 3.2D in U type, 3.6D in W type, and 3.7D in 3U type in a general ground condition.

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Bounary Element Analysis of Thermal Stress Intensity Factors for Cusp Cracks (커스프 균열에 대한 열응력세기 계수의 경계요소해석)

  • 이강용;조윤호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.119-129
    • /
    • 1990
  • In case that the body with a cusp crack is under uniform heat flow, thermal stress intensity factors are calculated by using boundary element method with linearized body force term. The crack surface is under insulated or fixed temperature condition and the types of crack are symmetric lip and airfoil cusps. Numerical values of thermal stress intensity factors for a Griffith crack and cusp cracks in infinite bodies are proved to be in good agreement within .+-.5% when compared with the previous numerical and exact solutions, respectively. The thermal stress intensity factors for symmetric lip and airfoil cusp cracks in finite bodies are calculated about various effective crack lengths, configuration parameters, and heat flow directions. With the same crack surface thermal boundary conditions, heat flow directions and crack lengths, there are no appreciable differences in variations of thermal stress intensity factors between symmetric lip and airfoil cusp cracks. The signs of thermal stress intensity factors for each cusp crack are changed with each crack surface thermal boundary condition.

A study on the thermal characteristics of MOSS type LNG carrier (MOSS형 LNG 선박의 열공학적 특성에 관한 연구)

  • 이세동;송성옥;이종원;김춘식;최두열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 1998
  • This paper introduced the thermal characteristics of Moss Rosenberg Verft spherical tank type LNG Carrier. Especially described the temperature variation during cooling down condition. It is not easy task to calculate the temperature variation because of unsteady state condition. In this paper, computer simulation program is developed by using a Tomas Algorithm on unsteady state condition and compared with calculation results and experimental results on existing LNG Carrier voyage.

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.53-59
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a green-house culture facility for reducing healing cost, Increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex In Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely Investigated by changing the control condition based on the temperature difference which Is the most important operating parameter For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, It is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Investigation on Thermal and Chemical Effects of CO2 in Oxygen Enriched Flame (산소부화화염내 CO2의 열 및 화학적 효과에 대한 연구)

  • Kum Sung Min;Lee Chang Eon;Han Ji Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.617-624
    • /
    • 2005
  • An analysis of the effects of $CO_{2}$ on fundamental combustion characteristics was performed in Oxygen enriched condition by comparing the laminar burning velocities, flame structures, fuel oxidation paths. Fictitious $CO_{2}$ was introduced to discriminate the chemical reaction effects of $CO_{2}$ from the thermal effects. PREMIX code was utilized to evaluate the laminar burning velocities. OPPDIF code was utilized to investigate the flame structure and fuel oxidation path variation. The contributions of thermal effects on laminar burning velocities are dominant at lowly oxygen-enriched condition but those of chemical reaction effects become dominant at highly oxygen-enriched condition. Chemical reaction effects caused the additional flame temperature decrease besides thermal effects and oxygen-leakage increase in non-premixed flame. Specific fuel oxidation path and CO production path is enhanced in spite of overall decrement of fuel consumption rate by chemical reaction effects of$CO_{2}$.

Efficiency Analysis of Thermal Transpiration According to Back Pressure under Vacuum Condition (진공환경에서 열적발산원리의 배압에 따른 효율분석)

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.76-79
    • /
    • 2007
  • From the previous researches about flow characteristic of micro-nozzle, we found that viscosity and back pressure induced heavy losses in micro nozzle. To overcome thess losses, we began to study new conceptual micro propulsion system that is thermal transpiration based micro propulsion system. It has no moving parts and can pump the gaseous propellant by temperature gradient only (cold to hot). Most of previous research on thermal transpiration is in its early stage and mainly studied for application to small vacuum facility or gas chromatography in ambient condition using nanoporous material like aerogel. In this study, we focus on basic research of propulsion system based on thermal transpiration using polyimide material in vacuum conditions.

  • PDF