• Title/Summary/Keyword: Thermal Comfort Temperature

Search Result 469, Processing Time 0.024 seconds

Framework for improving the prediction rate with respect to outdoor thermal comfort using machine learning

  • Jeong, Jaemin;Jeong, Jaewook;Lee, Minsu;Lee, Jaehyun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.119-127
    • /
    • 2022
  • Most of the construction works are conducted outdoors, so the construction workers are affected by weather conditions such as temperature, humidity, and wind velocity which can be evaluated the thermal comfort as environmental factors. In our previous researches, it was found that construction accidents are usually occurred in the discomfort ranges. The safety management, therefore, should be planned in consideration of the thermal comfort and measured by a specialized simulation tool. However, it is very complex, time-consuming, and difficult to model. To address this issue, this study is aimed to develop a framework of a prediction model for improving the prediction accuracy about outdoor thermal comfort considering environmental factors using machine learning algorithms with hyperparameter tuning. This study is done in four steps: i) Establishment of database, ii) Selection of variables to develop prediction model, iii) Development of prediction model; iv) Conducting of hyperparameter tuning. The tree type algorithm is used to develop the prediction model. The results of this study are as follows. First, considering three variables related to environmental factor, the prediction accuracy was 85.74%. Second, the prediction accuracy was 86.55% when considering four environmental factors. Third, after conducting hyperparameter tuning, the prediction accuracy was increased up to 87.28%. This study has several contributions. First, using this prediction model, the thermal comfort can be calculated easily and quickly. Second, using this prediction model, the safety management can be utilized to manage the construction accident considering weather conditions.

  • PDF

A Study on the thermal comfort change according to the Planting Type in housing complex (공동주택 단지 내 식재유형에 따른 온도저감 효과 연구)

  • Moon, Soo Young;Jang, Dae Hee
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.65-75
    • /
    • 2012
  • The rapid urbanization caused drastic temperature changes in Korea. Excessive urbanization and development result in unpredictable and abnormal climate change all over the world. These changes are reflected in Korean government policy and research about cities, such that various research endeavors have been undergone recently. There are lots of ways to improve the urban environment; the easiest way to solve the urban heat effect problem is to make green spaces within the city. Even though we can't enlarge green spaces over the city limitlessly, it is desperately need for a methodology to efficiently create green space in limited area. Based on awareness of issues as mentioned earlier, we would like to propose landscaping method that can increase thermal comfort in the same area. For this study, simulating the change of temperature, mean radiant temperature, PMV were done due to number of species planted in apartment complex. To increase the reliability of the simulation, first above all, field measurement for temperature change was performed in apartment complex, where residential building are arranged in the form of ㄷ. And based on this data, Envi-met simulation was performed varying 1-7 kinds of species divided by grass, shrubs, arbor (deciduous, conifers) planted in apartment complex. As a result, there was a change less than $1^{\circ}C$ with the increasing number of species in daytime, but the average radiation temperature about $6-7^{\circ}C$ was reduced. In addition, PMV index was improved by more than 0.5 point. Thermal comfort indicator improved significantly depending on the number of species during the day, on the other hand, there were no significant changes at night. As a consequence, this study has shown that not single-species planting but mixed planting varied the number of species would improve the thermal comfort in the same area of landscaping space at daytime.

Development of Comfort Control Logic for VRF System in Summer Season by using 3 Environment Factors(Temperature, Humidity and Air flow) (온도, 습도, 기류를 이용한 하절기 VRF 시스템의 쾌적 제어 알고리즘 개발)

  • Kim, Jong-Min;Choi, Jae-Boong;Lee, Sang-Won;Cho, Doo-Ho;Lee, Pil-Ho;Kim, Young-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.610-619
    • /
    • 2011
  • This paper investigates the simplified comfort index and control logic for VRF (Variable Refrigerant Flow) system by using 3 environmental factors such as temperature, humidity and air flow. Indoor test under thermal load was conducted to explore relationship of each environment factors that is related to simplified comfort index. Simplified comfort function that has 3 environmental variables was proposed based on survey results. Each factor is measured and comfort preference was surveyed by more than 30 subjects in the indoor comfort test. Moreover, control logic for VRF system was developed and then simulated by using thermal load calculation method and verified with test. The proposed comfort function was in good agreement with survey results, and also verification test trend of comfort change and maintenance are quite similar with survey. Furthermore, through the additional test data analysis some differences of comfort according to position of people staying in the test room were additionally investigated by air flow. People being under an exit of air in the indoor air-conditioner feel more comfortable condition and speed of response to comfort change is relatively fast.

Estimating the cooling effect of see breeze along canals and outdoor thermal comfort on urban heat load in summer (해풍(海風)을 이용한 하계(夏季) 도시열환경(都市熱環境)의 풍도(風道)계획과 인체의 쾌적성에 관한 연구)

  • Jeong, Chang-Won;Yoon, In;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1999
  • A new urban design method from the viewpoint of climate is considered to be desired for urban life. The authors verified on an environmental planning based on new urban design concept which introduced the effect of sea breeze blowing along canals. The field observation of urban thermal environment were carried out to examine the cooling effects of a river through city. The observations were conducted to find the effect of a sea breeze and climate in summer along canals. Effective distance from the sea and cooling effect of the sea breeze on urban temperature was analyzed. The thermal index using outdoor environment was modified with New Effective Temperature ET*. On the basis of the observation. Human thermal comfort is relieved and affected by sea breeze blowing along canals. The canals were utilized as the trail on which sea breeze blows towards the center of city. From these results, The wind trail is one of the effective passive design method from the viewpoint of urban climate.

  • PDF

A study on the comfort thermal environment by the Draft in floor panel heating system (바닥면복사난방에서 Draft에 의한 쾌적열환경에 관한 연구)

  • KyungHeeLee
    • Journal of the Korean housing association
    • /
    • v.7 no.2
    • /
    • pp.121-129
    • /
    • 1996
  • This study was to estimate how about various effects on the body thermal sensation as air velocity. clo. mean radiant temperature and resultant temperature are varied. The indoor thermal environment elements are measured under the five different of air velocity. Using the above considerations. the following results are obtained. ▶ The states, the air velocity under 0.5 m/s and 0.63 to 0.9 clo. were shown that the comfort zone of mean radiant temperature by 21.2~24.7C, the neutral point by 22.8C, the resultant temperature by 20.7-24.4C and the neutral point by 22.6C. ▶ On equal condition, the draft was occurred at a given air-velocity under 0.5m.s. It was also appeared the floor panel heating system affecting the body thermal sensation by the subject’s below-chest parts and the local discomfort by sensations on the feet and the knees.

  • PDF

Effect of Cooling Hands in the Cold Water for the Physiological Responses and Clothing Comfort -Focused on Vascular Hunting Reaction, Thermal Sensation and Pain Sensation- (손의 한랭자극이 인체생리반응과 의복의 쾌적성에 미치는 영향 -한랭혈관반응, 온랭감각, 한랭통증을 중심으로-)

  • 이원자
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.2
    • /
    • pp.279-289
    • /
    • 2004
  • This study was conducted to compare the hunting reaction of finger in the cold water. Finger skin temperature is measured the left middle finger tip immersion in cold water of 5℃ for 30 minutes and measurements were made on finger skin temperature(Ts), thermal comfort, and cold pain sensations during the experiment at the spring (March) and Winter(December). Results were follows. Is before immersion was at the highest in spring and at the lowest in winter and was closely related to the indoor temperature Ts during immersion and recovery. Mean of finger skin temperature(MST), the skin temperature at the first rise(TTR) and amplitude of finger skin temperature reaction during immersion(AT) were significant higher in spring than that in winter(P<.01). The lowest skin temperature(LST) during the cold water immersion were significantly higher in spring than that in winter (P<.05). The frequency of the appearance of cold-Induced vase dilation(CIVD) was higher in spring than that in winter. However, time for the first temperature(TTR) and recovery time(RT) had no seasonal variation. In addition, cold pains during immersion were felt more strongly in spring than in winter. Local thermal sensation, finger thermal sensation in dynamic state during hand immersion was different from that in the Winter. Spring was slowly cold in cold water immersion.

  • PDF

An Evaluation of Thermal Comfort on Urban Neighborhood Park for Improving Thermal Environment (도시근린공원의 열환경 개선을 위한 열쾌적성 평가)

  • Lim, Eun-Na;Lee, Woo-Sung;Choi, Chul-Hyun;Song, Bong-Geun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.153-170
    • /
    • 2013
  • This study was conducted to analyze the thermal comfort in the urban neighborhood park and to obtain a plan for improvement of the thermal environment. First, in the result of the analysis of the distribution characteristics of the park's main thermal environment factors and differences among types of space, temperature, relative humidity, and wind speed did not show a clear difference spatially. However, the median radiant temperature showed great differences according to the openness of the space and the covering material. According to the evaluation of thermal comfort by types of space based on derived thermal environmental factors, the PMV value of the square was the highest at 4.39, the paths showed 2.58, greenery 1.90, and resting spaces 0.42. In the result of the PMV regression model established for the evaluation of the significance of these thermal environment factors that decide thermal comfort, it showed that the relative significance to the PMV was as follows in decreasing order: median radiant temperature(1.084), wind speed(-0.280), temperature(0.013), and relative humidity(-0.009). When conducting a scenario analysis on the areas with need for improvement in thermal environment, it was found that through reflectivity, color and the change in the physical properties of packing materials the thermal comfort felt by the body could be improved, and it is believed that through this the improvement plan can be established.

The Effect of Thermal Storage/Release and Moisture Transport Properties of Polyethylene Glycol-Treated Acrylic Athletic Socks on the Wear Performance (Polyethylene Glycol 처리한 아크릴 운동용 양말의 축열 . 방열성과 수분전달 특성이 착용 성능에 미치는 영향)

  • 조길수;이은주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.1
    • /
    • pp.36-50
    • /
    • 1995
  • The purpose of this study was 1) to estimate the improvement of thermal storage/release and moisture transport properties of PEG-treated acrylic athletic socks and suggest the optimum add-on for PEG treatment, 2) to investigate wear performance of untreated cocks and two kinds of socks treated with PEG of minimum and optimum add-on respectively, and 3) to consider the effect of thermal storage/release and moisture transport properties of PEG- treated socks on the wear performance and the subjective comfort zone. Thermal activities of specimens treated by PDC were evaluated on a DSC by measuring the heat of fusion on heating and the heat of crystallization on cooling. Moisture regain, absorption speed, wickability, water retenti on value, and water-vapor permeability were measured. In the wear trials that the subjects performed a subsequent exercise protocol wearing three differently treated socks in a conditioned environment ($14\pm2^{\circ}C$, 65$\pm$2% R.H.), microclimate temperature and humidity, and subjective wear sensations including thermal sensation, wettedness, softness, fit, and overall comfort were obtained. PEC-treated specimens with more than 20% add-on showed thermal storage on heating and thermal release on cooling by a DSC and the heat contents of treated ones were generally proportional to the add-ons. Moisture transport properties were highly improved after PEG treatment and increased rapidly with increasing add-on. The tendencies were, however, relaxed above 50% add-on and the treated knits were much stiffer above that add-on. In the wear trials of untreated, PEG add-on 20%, and 50% acrylic socks, the changes of microclimate temperature of 50% socks were significantly less than that of 20% socks. PEG add-on 50% socks showed significantly less changes of microclimate humidity than other two kinds of socks. Three kinds of socks showed significant differences in overall comfort and add-on 50% socks were accepted more comfortable than other two kinds of socks. Comfort zone of foot was extended after PEG treatment on socks and it implied that the subjects wearing PEG- treated socks felt comfortable in wider ranges of microclimate temperature and humidity.

  • PDF

Wear Comfort Evaluation on Water-vapor-permeable (WVP) Garments Using a Movable Sweating Thermal Manikin (발한써멀마네킨을 이용한 투습방수의류의 착용쾌적성 평가)

  • Kang, Inhyeng;Lee, Han Sup
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1095-1106
    • /
    • 2013
  • This study evaluated the wear comfort properties of water-vapor-permeable (WVP) garments using a movable sweating thermal manikin. Manikin tests were performed in a climatic chamber (temperature T=20, $35{\pm}0.5^{\circ}C$ and relative humidity $H=50{\pm}10%$) using seven sportswear outfits (a long sleeve shirts and a long pants) made with seven different WVP fabrics. Physiological responses of wear trials could be correlated with measurement parameters of the thermal manikin experiment; subsequently, a regression model that represented a final comfort sensation could be obtained. The regression model developed in this work is based on thermal manikin measurements; consequently, it provides an independent comfort sensation level in a relatively short time at a low cost while maintaining the reproducibility of results. It translates into more actual choices for sportswear manufacturers and sportswear consumers.

The Analysis for Thermal Comfort Evaluation during long time operating Air Conditioner (에어컨 장시간 운전시 온열쾌적감 평가에 관한 연구)

  • Kim, Dong-Gyu;Park, Jong-Il;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.59-64
    • /
    • 2007
  • Using air conditioner has been increased in home or office buildings in summer. Also various problems related to air conditioning such as disease induction happened by using air conditioner excessively and operating long. Active operation control is needed for occupant's health when air conditioner operates long. We should think ahead to acquire thermal comfort of occupants which represents psychological and physiological reaction for this operation. Research has been progressed to observe activity of autonomic nervous system by trying to quantitate change of thermal comfort. In this study, questions of the subject and change of body's autonomic nervous system were chosen to evaluate thermal comfort during operation of air conditioner for a long time. Electrocardiogram and questions of the subject which is the progress of changing TSV and CSV by occupants indoor were measured when room air conditioner is operated for a long time, and an air-conditioned adaptability of human body was evaluated by acquiring the change rate of autonomic nervous system through analyzing HRV. As a result of the evaluation, change rate of body's autonomic nervous system corresponded to votes of the subject's question generally, but was distinguished from analysis result of warm-cold sensation in a low temperature area.