• 제목/요약/키워드: Thermal Coating

검색결과 1,173건 처리시간 0.026초

플라즈마 용사법에 의한 열차폐 코팅의 열피로에 따른 AE신호 특성 연구 (A Study on Acoustic Emission Characteristics through the Cyclic Thermal Test of Thermal Barrier Coating by Plasma Spray Process)

  • 박진효;이구현;예경환;김승태;전채홍;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1349-1352
    • /
    • 2005
  • This paper is to investigate a defect for thermal barrier coating layers by acoustic emission method in 4-point bending test. The two-layer thermal barrier coating is composed of $150\mu{m}\;CoNiCrAlY\;bond\;coating\;by\;vacuum\;plasma\;spray(VPS)\;process\;and\;250\mu{m}\;ZrO_2-8wt%Y_2O_3$ ceramic coating layer by air plasma spray(APS) process on Inconel-718. The specimen prepared by cyclic thermal test(500, 1000, 2000cycle) at $1050^{\circ}C$ The AE monitoring system is composed of PICO type sensor, a wide band pre-amplifier(40dB), PC and AE DSP(16/32 PAC) board. The AE event, amplitude, Cumulative energy and count of coating specimens is evaluated according to cyclic thermal test.

  • PDF

용사법에 의한 질코니아 세라믹코팅에 대한 연구 (Plasma spray coating of zirconia ceramic)

  • 이형근;김대훈;황선효;전계남;서동수
    • Journal of Welding and Joining
    • /
    • 제7권2호
    • /
    • pp.25-34
    • /
    • 1989
  • The purpose of this work is to coat ZrO$_{2}$ - 8Y$_{2}$O$_{3}$ ceramic on the Al cast alloy(AC-8A) by using the plasma spray method. Two types of coatings which were composed of two and three layer coating were examined. Each coating powder was analyzed for shape and size distribution and X-ray diffraction pattern. For the coated layers, microstructural analysis and performance estimation which was composed of static thermal test, thermal cyclic test and thermal shock test were conducted.

  • PDF

Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying

  • Jeon, Hak-Beom;Lee, In-Hwan;An, Gye Seok;Oh, Yoon-Suk
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.450-454
    • /
    • 2018
  • In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.

스프레이 코팅 기술 (Spray Coating Technology)

  • 이창희
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

금속결합층의 조성이 $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ 단열층의 내구성에 미치는 영향 (Effect of Composition of Bond Coating on the Durability of the Plasma Sprayed $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ Thermal Barrier Coating)

  • 김혜성;김병희;서동수
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.73-80
    • /
    • 1999
  • The effect of alloy compositions of the bond coating on the plasma sprayed-thermal barrier coatings was investigated. The performance of the coating composed of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ and Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$was evaluated by isothermal and thermal cyclic test in an ambient atmosphere at 115$0^{\circ}C$. The failure of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coatings was occurred at the bond coating/ceramic coating interface while Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coating was failed at the substrate/bond coating interface after thermal cyclic test. The lifetime of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coatings was longer than Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coating. The oxidation rate of the NiCrAl bond coating examined by TGA was lower than CoNiCrAlY bond coatings. In summary, these results suggest that Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$system as thermal barrier coating be not suitable considering the durability of the coating layer for high temperature oxidation and thermal stress.

  • PDF

플라즈마 용사된 $ZrO_{2}$-단열 코팅층의 특성 및 열처리에 따른 접합강도변화 (Characteristic and Adhesive Strength Change by Heat Treatment of the Plasma Sprayed $ZrO_{2}$- Thermal Barrier Coatings(TBC))

  • 김병희;서동수
    • 한국재료학회지
    • /
    • 제8권6호
    • /
    • pp.505-512
    • /
    • 1998
  • 플라즈마 용사법을이용하여 AISI 316 스테인레스 금속모재에 0.1mm 두께의 $NiCrAlCoY_{2}O_{3}$금속 결합층과 0.3mm 두께의 $ZrO_{2}(8wt%Y_{2}O_3$) 세라믹층으로 구성된 이층 단열코팅층을 제조하였다. 코팅층의 미세조직, 금속결합층의 산화를 고찰하였으며, $900^{\circ}C$에서 등은 시험과 열반복시험 후, 접합강도시험을 통하여 코팅층의 단사정 상은 열처리시간이 길어질수록 약간 증가하였다. 또한 비변태성 t'의 c/a는 용사상태에서 1.0099이였으며, 100시간 열처리 후에는 1.0115로 약간 증가하였다. 그리고 용사층의 접합강도는 열처리 시간이 길어질수록 감소하였다. 등온열처리 후에는 1.0115로 약간 증가하였다. 그리고 용사층 의 접합강도는 열처리 시간이 길어질수록 감소하였다. 등온열처리 후, 파괴는 주로 세라믹층에서 일어났으며, 반복 열처리되 시편에서는 10회 이후 대부분 금속결합층/세라믹층의 계면에서 일어났다.

  • PDF

표면코팅 구조재의 달열효과 분석 (An Analysis on Thermal Insulation Effect of Farm Structures Coated with Surface Treatment)

  • 서원명;윤용철
    • 한국농공학회논문집
    • /
    • 제46권4호
    • /
    • pp.39-46
    • /
    • 2004
  • This experiment was carried out to study on the effect of surface coating on thermal insulation of farm structures to improve thermal resistance and reflective effect of solar radiation. Nine different types of experimental specimen were compared in the temperature variations of inside and outside; A, B, C, D. E and F types are box container and G, H and I types are drum container. The size of these containers is $1,500{\times}2,000{\times}2,500$ mm and ${\varphi}$ $280{\times}330$ mm, respectively. Specimen of 3-type box(A, B, C) is galvanized steel sheet of thickness 0.45 mm. D, E and F types are sandwich panel of the thickness 50 mm inserted with urethane, glass wool and polystyrene form, respectively. G, H and I types are paint pot using in general. The surface of A. D, E, F and I types didn't any treatment, B, C and G types were treated with thermal insulation coating on the outside surface(B, G) or the inside and outside surface(C). And H type was treated with water paint coating on the only outside surface. In general, the experimental results showed the following tendencies; In case of A, B and C types. it was found that the thermal insulation effect of types coated with thermal insulation coating was improved remarkably than that of no treatment. And the thermal insulation effect between steel sheet and sandwich panel type was nearly similar There was not a significant difference of thermal insulation effect between thermal insulation coating and water paint coating. In time of drum container filled with rough rice, The difference of heat transfer tendency and temperature variation among surface treatments was nearly similar that of box types of galvanized steel sheet. And there was time lag about 6 hours between the temperature of middle part of rice and that of inside or outside surface.

해수 내 아크 아연 용사코팅 층의 전기화학적 특성 (Electrochemical Characteristics of Arc Zn Thermal Spray Coating Layer in Sea Water)

  • 박일초;서광철;이경우;김성종
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.343-348
    • /
    • 2015
  • In this paper, arc Zn thermal spray coating was carried out on the SS400 steel, and then various electrochemical characteristics and surface damage behavior of Zn thermal spray coating layer were analyzed. As the results, the potential of Zn thermal spray coating layer presented driving voltage above 300 mV compare to that of SS400 steel. The passivity characteristic in anodic polarization curve was not presented. It was adequate to as sacrificial anode material. In the surface damage after galvanostatic experiments, uniform corrosion tendency of Zn thermal spray coating layer was clearly observed with acceleration of the dissolution reaction. In conclusion, Zn thermal spray coating could be determined to represent the corrosion protection effect by stable sacrificial anodic cathodic protection method in seawater because it had sufficient driving voltage and uniform corrosion damage tendency for the SS400 steel.

Effect of coating thickness on contact fatigue and wear behavior of thermal barrier coatings

  • Lee, Dong Heon;Jang, Bin;Kim, Chul;Lee, Kee Sung
    • Journal of Ceramic Processing Research
    • /
    • 제20권5호
    • /
    • pp.499-504
    • /
    • 2019
  • The effect of coating thickness on the contact fatigue and wear of thermal barrier coatings (TBCs) are investigated in this study. The same bondcoat material thickness (250 ㎛) are used for each sample, which allows the effect of the coating thickness of the topcoat to be investigated. TBCs with different coating thicknesses (200, 400, and 600 ㎛) are prepared by changing processing parameters such as the feeding rate of the feedstock, spraying speed, and spraying distance during APS(air plasma spray) coating. The damage size on the surface are strongly affected by the coating thickness effect. Although the damage size from contact fatigue using a spherical indenter diminish at a TBC of 200 ㎛, a high wear resistance such as a low friction coefficient and little mass change are found at a TBC of 600 ㎛. These results indicate that the coating thickness strongly affects the mechanical behavior in TBCs during gas turbine operation.

Creation of Diamond/Molybdenum Composite Coating in Open Air

  • Ando, Yasutaka;Tobe, Shogo;Tahara, Hirokazu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1313-1314
    • /
    • 2006
  • For improvement of wear resistance property of atmospheric thermal plasma sprayed molybdenum (Mo) coating, diamond deposition on the atmospheric plasma sprayed molybdenum coating by the combustion flame chemical vapor deposition (CFCVD) has been operated. In this study, to diminish the thermal damage of the substrate during operation, a thermal insulator was equipped between substrate and water-cooled substrate holder. Consequently, diamond particles could be created on the Mo coating without fracture and peeling off. From these results, it was found that this process had a high potential in order to improve wear resistance of thermal sprayed coating.

  • PDF