• Title/Summary/Keyword: Thermal Box

Search Result 231, Processing Time 0.032 seconds

A Study of the Improvement of Thermal Performance of a Junction Box of a Passenger Car (자동차 정션박스의 열성능 개선을 위한 연구)

  • Lee, Young-Lim
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.136-142
    • /
    • 2008
  • Thermal management of a junction box of a passenger car has recently become more challenging due to its smaller size and larger current capacity. Thus, it is essential to perform the thermal optimization of a junction box in its design on an early stage of vehicle design. In this study, 3 dimensional CFD simulation with experimental measurement has been done to study for better thermal management of the junction box. First, the study of thermal characteristics of electric relays in the junction box has revealed that each surface of the relay has very different thermal resistance. In addition, an idea to install a cooling fan on the junction box has been studied and it was found that the forced cooling method was not effective on the system to keep the thermal resistance to the reasonable level of the junction box. Finally, the effect of external flows around the junction box on the temperatures of the relays, fuses, etc. has been studied and the result shows that the installation of the junction box at the proper place in an engine room can avoid any unnecessary overdesign in thermal management.

Construction Techniques for Crack Control of Underground Box Structures (지하철 박스 구조물의 수화열 해석 및 온도균열 제어 방안)

  • 차수원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.153-159
    • /
    • 2001
  • Recently, the underground reinforced concrete(RC) box structures have been increasingly built in Korea. In such structures, the heat of hydration may cause serious cracking problems. The RC box structures are classified in this category that needs much attention to control the hydration heat during construction, which causes the restraining effects on the boundaries. The purpose of the present study is to develop the rational construction method to control the thermal cracking problem of the box structures. In this study, the causes and mechanism of thermal cracking according to construction stages in the RC box structures are thoroughly analyzed. The major influencing variables are studied through the finite element analysis which affect the thermal cracking of RC box structures. The research results of the present study can be efficiently used for the control of cracking of box structures during construction stages.

  • PDF

Parametric Studies on the Temperature and Thermal Stresses According to Construction Condition of RC Box Structures (철근콘크리트 박스구조물의 시공변수에 따른 수화온도 및 열응력 특성 비교 연구)

  • 오병환;최성철;이명섭;박해균;주태성;안경철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.47-52
    • /
    • 2002
  • Recently, the underground reinforced concrete(RC) box structures have been increasingly built in Korea. In such structures, the heat of hydration may cause serious cracking problems. The RC box structures are classified in this category that needs much attention to control the hydration heat during construction. The purpose of the present study is to analyse the parameters which are related to the thermal crackings of the box structures. In this study, the quantitative studies of thermal stresses according to construction conditions in the RC box structures are thoroughly analysed. Major influencing variables are studied through the finite element analysis which affect the thermal cracking of RC box structures.

  • PDF

Temperature Analysis of PSC Box-girder Bridges Using Inverse Thermal Analysis Program (온도분포 역해석 프로그램을 이용한 PSC 박스거더 교량 단면의 온도 분포 해석)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Myung-Kue
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.95-101
    • /
    • 2006
  • It is well known that the thermal load in PSC(prestressed concrete) box-girder bridge is the principal cause of detrimental crack. The longitudinal stress caused by the lateral stress from the temperature gradient in slab of PSC box-girder bridge has a considerable influence on the durability and economy of bridge structures. As the basic study for the rational consideration of thermal load and the derivation of design guide, the inverse thermal analysis program for PSC box-girder bridges using field measurement data is developed. In this paper, thermal analyses are performed using field monitoring data for the sample PSC box-girder bridge. It is proposed that the link between monitoring program and the inverse analysis program is available.

A Study on the Behavior of P.C. Box Girder Bridge for Temperature Gradients (온도 구배에 대한 P.C. 상자형 교량의 거동연구)

  • 손기훈;이성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.159-166
    • /
    • 1998
  • To study temperature effect of P.C. box girder bridge, field measurement was performed for six months, along with thermal analysis for the newly constructed viaduct of Gangbyun Highway in Seoul. Thermocouples were installed inside and surface of the flange and web of the box and temperature of box section md ambient temperature was measured. Measured environmental data are incorporated in finite element thermal analysis and computed temperature of the section was compared with measured one. Temperature gradient from thermal analysis was compared with Korean Highway Specification(1996)and the New Zealand Ministry of Works and Development code(1976). Thermal stress distribution across the box section was also compared.

  • PDF

Experimental analysis of thermal gradient in concrete box girder bridges and effects of polyurethane insulation in thermal loads reduction

  • Raeesi, Farzad;Heydari, Sajad;Veladi, Hedayat
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.645-654
    • /
    • 2022
  • Environmental thermal loads such as vertical and lateral temperature gradients are significant factors that must be taken into account when designing the bridge. Different models have been developed and used by countries for simulating thermal gradients in bridge codes. In most of the codes only vertical temperature gradients are considered, such as Iranian Standard Loads for Bridge code (ISLB), which only considers the vertical gradient for bridge design proposes. On the other hand, the vertical gradient profile specified in ISLB, has many lacks due to the diversity of climate in Iran, and only one vertical gradient profile is defined for whole Iran. This paper aims to get the both vertical and lateral gradient loads for the concrete box girder using experimental analysis in the capital of Iran, Tehran. To fulfill this aim, thermocouples are installed in experimental concrete segment and temperatures in different location of the segment are recorded. A three dimensional finite element model of concrete box-girder bridge is constructed to study the effects of thermal loads. Results of investigation proved that the effects of thermal loads are not negligible, and must be considered in design processes. Moreover, a solution for reducing the negative effects of thermal gradients in bridges is proposed. Results of the simulation show that using one layer polyurethane insulation can significantly reduce the thermal gradients and thermal stresses.

Launch Stage Thermal Analysis on a Mass Varying Satellite Box by Analytical Solutions (해석해를 이용한 질량변화가 있는 위성 부품에 대한 발사시 열해석)

  • Choi, Joon-Min;Kim, Hui-Kyung;Hyun, Bum-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.163-168
    • /
    • 2003
  • Analytical approach is applied to predict temperature of satellite box under worst hot condition from fairing jettison to separation. The box is tried to solve analytically which is exposed to known environmental heating condition and has internal heating and irradiation to space. For a single thermal mass, governing equation for temperature is simplified to 1st order ordinary differential equation(ODE) by several assumptions. Two cases are considered. The one is for constant mass box and the other is for mass-varying box. Each case has three different analytical solution by sign of constant term in ODE. One analytical solution for constant mass is applied to physical launch stage condition. It is concluded that the present analytical method can be used to quick predict the temperature of a satellite box and check whether a satellite is safe against space environment during launch stage.

  • PDF

Estimation of Design Thermal Loads on PSC Box Girder Bridges by Statistical Extrapolation of Analytical Data (해석 데이터의 통계적 방법을 통한 PSC 박스거더교의 설계 온도 하중 추정)

  • 황의승;임창균;이영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.497-500
    • /
    • 2000
  • This paper describes the procedures to estimate for the design thermal loads on prestressed concrete box girder bridges on th basis of the extreme analysis of the temperature data obtained from long-term thermal analyses. Long-term thermal analyses using the environmental data for three years were conducted, and the extreme distributions of th thermal loads are then determined by the tail-equivalence method, and the thermal loads corresponding to selected return period are calculated. Finally, the results are compared to the specifications suggested in a current design code for thermal loads.

  • PDF

Thermal Crack Control of Box-Culvert by Using Rapid-Strength Belite Cement (조강형벨라이트 시멘트 적용을 통한 Box-Culvert 의 온도균열 제어)

  • 김태홍;하재담;김동석;이종열;박경래;이주호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.521-526
    • /
    • 2001
  • Box-culvert is very important structure used almost every road construction. However this is treated very simple structure in design and construction. So many crack such as nonstructural crack has been occurred. This crack is very harmful on durability of concrete. In this study, thermal crack, one of the nonstructural crack, of box-culvert controled by using rapid-strength belite cement concrete. In this process, not only heat of hydration and thermal stress but also material mechanics properties and characteristics of durability were tested. and same model box-culvert using OPC concrete is constructed in same condition for comparison.

  • PDF