• 제목/요약/키워드: Thermal Analysis simulation

검색결과 1,222건 처리시간 0.027초

급속 금형가열에 의한 박육 사출성형의 유동특성 개선에 관한 연구 (A Study on Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Mold Heating)

  • 박근;김병훈
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.15-20
    • /
    • 2006
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filling difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation for both the conventional molding and the RTR molding processes.

급속 가열에 의한 박육 사출성형의 유동특성 개선 (Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Beating)

  • 김병훈;박근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.9-12
    • /
    • 2005
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filing difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation fur both the conventional molding and the RTR molding processes

  • PDF

웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션 (Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.

Impact of standard construction specification on thermal comfort in UK dwellings

  • Amoako-Attah, Joseph;B-Jahromi, Ali
    • Advances in environmental research
    • /
    • 제3권3호
    • /
    • pp.253-281
    • /
    • 2014
  • The quest for enhanced thermal comfort for dwellings encompasses the holistic utilization of improved building fabric, impact of weather variation and amongst passive cooling design consideration the provision of appropriate ventilation and shading strategy. Whilst thermal comfort is prime to dwellings considerations, limited research has been done in this area with the attention focused mostly on non-dwellings. This paper examines the current and future thermal comfort implications of four different standard construction specifications which show a progressive increase in thermal mass and airtightness and is underpinned by the newly developed CIBSE adaptive thermal comfort method for assessing the risk of overheating in naturally ventilated dwellings. Interactive investigation on the impact of building fabric variation, natural ventilation scenarios, external shading and varying occupants' characteristics to analyse dwellings thermal comfort based on non-heating season of current and future weather patterns of London and Birmingham is conducted. The overheating analysis focus on the whole building and individual zones. The findings from the thermal analysis simulation are illustrated graphically coupled with statistical analysis of data collected from the simulation. The results indicate that, judicious integrated approach of improved design options could substantially reduce the operating temperatures in dwellings and enhance thermal comfort.

Thermal Stress Simulation of Mass Concrete Using Thermal Stress Device

  • 무하마드나시르;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.474-477
    • /
    • 2006
  • To predict thermal stress independent of uncertain material properties of early age concrete, such as elastic modulus and creep, thermal stress device is used. In order to verify the application of various degree of constraint in the thermal stress device, a series of experiments were performed on mass concrete followed by numerical simulation. The application of various degrees of constraint can be achieved by using constraint frame material with different thermal expansion coefficient, length, and cross sectional area. Temperature development in the real structure has been simulated using temperature and humidity control chamber. The results from experiments and numerical analysis show that the thermal stresses estimated from simulation agree well with the general stress variations in the real structure even though the properties of concrete are uncertain.

  • PDF

항공기용 EHA의 열유동 해석모델 개발 및 활용 (Development and Application of Thermal hydraulic Simulation Model for Aircraft-EHA(Electro-Hydrostatic Actuator))

  • 노대경;윤영환;김대현;김상석;김상범;박상준;최관호;장주섭
    • 한국시뮬레이션학회논문지
    • /
    • 제23권2호
    • /
    • pp.17-24
    • /
    • 2014
  • 본 논문은 항공기용 EHA의 열유동 해석모델을 개발하고 활용하는 사례를 보여준다. 연구진행 절차는 다음과 같다. 첫째, 설계 컨셉에 맞는 물리량을 반영하는 유압단품 해석모델을 개발한다. 둘째, 유압단품 모델을 조합하여 EHA 유압모델로 확장한다. 셋째, 열유동이 포함된 해석모델을 개발하여 초기온도와 부하의 변화에 따른 유온의 상승시간을 검토한다. 마지막으로, 여러 케이스의 열유동 해석결과가 조합된, 설계에 활용이 가능한 지배그래프를 작성하여 제안한다. 이 모든 과정은 상용 소프트웨어인 AMEsim을 사용하여 진행한다.

수치해석 및 실험에 의한 LCD-TV의 열분포 분석 (Analysis of Thermal Distribution for LCD-TV Using Numerical Simulation and Experiment)

  • 김윤석;이정권;정두환;고한서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.302-307
    • /
    • 2003
  • Demand of the LCD-TV is remarkably increasing with development of the LCD technology in these days. Thus, this research has analyzed thermal problems such as heat transfer characteristics inside and outside the LCD-TV using numerical simulation and experiments. The simulated results have been compared with the experimental results using an infrared (IR) camera and T-type thermocouples. The optimal design of structure has been proposed to improve the thermal efficiency of radiation from the comparison.

  • PDF

동적 시뮬레이션을 이용한 태양광열 시스템의 성능특성 분석 (Study on the Analysis Performance of PVT system using the Dynamic Simulation)

  • 김상열;남유진
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: A photovoltaic/thermal system is a solar collector combining photovoltaic module with a solar thermal collector, which produces electricity and heat at the same time. PVT system removes heat from PV module through air or liquid that would help to raise the efficiency of the PV systems performance. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. However, even though various of PVT system were developed and several systems were applied to practical use, there have been few researches for the performance analysis using the dynamic simulation. Method: In this study, the review of recent research and development trend for PVT systems were conducted. Furthermore, in order to develop the optimum design method, the performance analysis for PVT system was conducted by a dynamic simulation. Result: In the results, it was found that the performance of PVT system significantly depends on the ambient temperature and solar radiation. Moreover, in the weather condition of Seoul, average efficiency of electricity and heat in heating season were 13.79 and 41.85%, and they in cooling season were 14.39% and 26.18%, respectively.

건물에너지 성능 분석을 위한 간이 건물에너지 시뮬레이션 프로그램 개발에 관한 연구 (Development of Simplified Building Energy Simulation Program for Building Energy Performance Analysis)

  • 박종일;강윤석;임병찬
    • 설비공학논문집
    • /
    • 제21권1호
    • /
    • pp.9-15
    • /
    • 2009
  • There are various types of energy simulation tool to predict both thermal load and energy use. However, the problem about these software is that they have too much input variables and need expert with skills to run the simulation. Therefore, the purpose of this study is to develop the thermal analysis simulation program with input variables which eliminates coordinates of building components instead of using full coordinates by using DOE2. Since the simulation engine of the program is DOE2, the validity of S-DOE is performed by comparing peak heating and cooling load results with VisualDOE and annual energy use results with actual energy use of 1996. The results have shown that there are little difference between VisualDOE and S-DOE. Also it showed that there are little difference between actual energy use and S-DOE energy use results. S-DOE took less time to model a building than VisualDOE. These results reveals that the application of S-DOE have potentials in accurately predicting both energy load and energy use of the building and still have an advantage of taking less time to model a building.

Simulation Research on the Thermal Effects in Dipolar Illuminated Lithography

  • Yao, Changcheng;Gong, Yan
    • Journal of the Optical Society of Korea
    • /
    • 제20권2호
    • /
    • pp.251-256
    • /
    • 2016
  • The prediction of thermal effects in lithography projection objective plays a significant role in the real-time dynamic compensation of thermal aberrations. For the illuminated lithography projection objective, this paper applies finite element analysis to get the temperature distribution, surface deformation and stress data. To improve the efficiency, a temperature distribution function model is proposed to use for the simulation of thermal aberrations with the help of optical analysis software CODE V. SigFit is approved integrated optomechanical analysis software with the feature of calculating OPD effects due to temperature change, and it is utilized to prove the validation of the temperature distribution function. Results show that the impact of surface deformation and stress is negligible compared with the refractive index change; astigmatisms and 4-foil aberrations dominate in the thermal aberration, about 1.7 λ and 0.45 λ. The system takes about one hour to reach thermal equilibrium and the contrast of the imaging of dense lines get worse as time goes on.