• Title/Summary/Keyword: Thermal Aging

Search Result 622, Processing Time 0.028 seconds

Electrochemical Combined-Stress Degradation Test and Failure Mechanisms of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM 고무의 전기화학적 복합노화시험 및 고장메커니즘)

  • Kwak, Seung Bum;Choi, Nak Sam;Shin, Sei Moon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Coolant rubber hoses for automotive radiators can degrade under thermal and mechanical loadings and thus fail owing to the influences of locally formed electricity. In this study, an advanced test method was developed to simulate the failure of a rubber hose. The aging behavior of carbon-black-filled ethylene-propylene diene monomer (EPDM) rubber used as a radiator hose material under a combination of electrochemical stresses and tensile strain was analyzed. The changing behaviors of the current and the resistance as a function of the aging time were analyzed in consideration of the tensile strain, voltage, and aging temperature. Sectioned specimens clarified the failure mechanisms of the aged skin layer under the combined electrochemical stresses.

The effect of thermo-mechanical fatigue on the retentive force and dimensional changes in polyetheretherketone clasps with different thickness and undercut

  • Guleryuz, Aysegul;Korkmaz, Cumhur;Sener, Ayse;Tas, Mehmet Ozan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.304-315
    • /
    • 2021
  • PURPOSE. Esthetic expectations have increased the use of polyetheretherketone (PEEK) clasps as alternatives to Cr-Co in removable partial dentures (RPDs). The objective of this study was to evaluate the retentive force and dimensional change of clasps with different thickness and undercut made from PEEK by the thermo-mechanical fatigue. MATERIALS AND METHODS. PEEK clasps (N = 48) with thicknesses of 1 or 1.50 mm and 48 premolar monolithic zirconia crowns with undercuts of 0.25 mm or 0.50 mm were fabricated. Samples are divided into four groups (C1-C4) and were subjected to 7200 thermal aging cycles (at 5 - 55℃). The changes in the retentive force and dimensions of the clasps were measured by micro-stress testing and micro-CT devices from five measurement points (M1 - M5). One-way ANOVA, paired t-test, two-way repeated ANOVA, and post-hoc tests were used to analyze the data (P < .05). RESULTS. The retentive forces of C1, C2, C3, and C4 groups in initial and final test were found to be 4.389-3.388 N, 4.67 - 3.396 N, 5.161 - 4.096 N, 5.459 - 4.141 N, respectively. The effects of retentive force of all PEEK clasps groups were significant decreased. Thermo-mechanical cycles caused significant dimensional changes at points with M2, M4, and M5, and abraded the clasp corners and increased the distance between the ends of the clasp, resulting in reduced retentive forces (P* = .016, P* = .042, P < .001, respectively). CONCLUSION. Thermo-mechanical aging decreases the retentive forces in PEEK clasps. Increasing the thickness and undercut amount of clasps decreases the amount of dimensional change. The values measured after aging are within the clinically acceptable limits.

The Study of Curing Day Reduction by Step Curing of HTPB/AP Propellant (HTPB/AP계열의 고체 추진제의 Step 경화 방법을 통한 경화일(기간) 단축)

  • Kim, Kahee;Park, Jung-Ho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • In this paper, step-curing, which includes the change of curing temperature on the curing process, was applied to reduce curing day of HTPB/AP based propellant. This study targets the improvement of productivity of HTPB/AP based solid rocket motor. Comparison of mechanical properties of propellant resulted in the change of normal curing condition (60℃, 5 days) to step-curing condition (60℃, 1 day / 65℃, 3 days). Post-cure test was conducted to determine the impact on the shelf life of the solid rocket motor. The aging characteristics of propellants were analyzed by measuring mechanical properties and thermal expansion factor. To step-cured propellant, accelerated aging test was performed for 12 weeks, followed by tensile test. Sm(bar) and Em(%) were higher than 8 bar and 40% each, showing excellent mechanical properties.

Correlation between different methodologies used to evaluate the marginal adaptation of proximal dentin gingival margins elevated using a glass hybrid

  • Hoda S. Ismail;Brian R. Morrow;Ashraf I. Ali;Rabab El. Mehesen;Franklin Garcia-Godoy;Salah H. Mahmoud
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.36.1-36.17
    • /
    • 2022
  • Objectives: This study aimed to evaluate the effect of aging on the marginal quality of glass hybrid (GH) material used to elevate dentin gingival margins, and to analyze the consistency of the results obtained by 3 in vitro methods. Materials and Methods: Ten teeth received compound class II cavities with subgingival margins. The dentin gingival margins were elevated with GH, followed by resin composite. The GH/gingival dentin interfaces were examined through digital microscopy, scanning electron microscopy (SEM) using resin replicas, and according to the World Dental Federation (FDI) criteria. After initial evaluations, all teeth were subjected to 10,000 thermal cycles, followed by repeating the same marginal evaluations and energy dispersive spectroscopy (EDS) analysis for the interfacial zone of 2 specimens. Marginal quality was expressed as the percentage of continuous margin at ×200 for microscopic techniques and as the frequency of each score for FDI ranking. Data were analyzed using the paired sample t-test, Wilcoxon signed-rank test, and Pearson and Spearmen correlation coefficients. Results: None of the testing techniques proved the significance of the aging factor. Moderate and strong significant correlations were found between the testing techniques. The EDS results suggested the presence of an ion-exchange layer along the GH/gingival dentin interface of aged specimens. Conclusions: The marginal quality of the GH/dentin gingival interface defied aging by thermocycling. The replica SEM and FDI ranking results had stronger correlations with each other than either showed with the digital microscopy results.

Au-Sn합금 도금층의 접촉저항 및 솔더퍼짐성에 미치는 Sn함량의 영향

  • Park, Jae-Wang;Son, In-Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.130-130
    • /
    • 2017
  • Au 합금 도금층은 내마모성 및 내식성이 우수하고 접촉저항이 낮기 때문에, 커넥터, 인쇄회로기판 등과 같은 전자부품의 접속단자부에 널리 적용되고 있다. 각 부품들을 효과적으로 전기적 신호를 통해 연결하기 위해서는 낮은 접촉저항이 요구되며, 이러한 Au 합금 도금층의 접촉저항은 합금 원소의 종류 및 함량, 용융 솔더와 전자부품을 고정시키는 표면실장공정에서 받는 theremal aging의 온도와 시간에 따라 변화된다. 현재 전자부품용 커넥터에 실시되고 있는 금 합금도금은 Au-0.3wt%Co합금, Au-0.2wt%Ni합금도금이 대부분 적용되고 있으며, 높은 순도(금 함유량 99.7wt%이상)로 인하여 금 사용량을 절감하기 어려운 실정이다. Sn은 Au와 높은 고용률을 갖는 합금을 형성하는 장점을 갖고 있기에 금 사용량 절감에 큰 기여를 할 수 있을 것으로 예상된다. 따라서 본 연구에서는 Sn을 합금 원소로 사용하여 높은 Sn함량을 갖는 Au 합금 도금층을 제작하고, 무연솔더의 융점보다 더 높은 온도인 533K에서 thermal aging을 실시하여, Sn함량별로 thermal aging에 따른 접촉저항과 솔더퍼짐성의 변화를 기존의 Co, Ni합금과 비교 조사하였다. 또한, 표면분석을 통하여 Au-Sn합금 도금층의 접촉저항이 변화하는 요인에 대해서도 고찰하였다. 표면적 $0.2dm^2$의 순수 동 시편 위에 약 $2{\mu}m$두께의 Ni도금을 실시한 후 Sn 함량을 다르게 준비한 도금 용액(Au 6g/L, Sn 1~8g/L)을 사용하여 Au-Sn합금 도금을 실시하였다. Au-Sn합금 도금층은 전류밀도 0.5ASD, 온도 $40^{\circ}C$에서 약 $0.1{\mu}m$두께가 되도록 도금하였으며, 두께는 형광X선 도금두께측정기로 측정하였다. 금 합금 도금층 내의 Sn함량은 Ti시편 위에 도금한 Au-Sn합금층을 왕수에 용해시킨 다음, ICP를 사용하여 분석하였다. Au-Sn합금 도금층의 접촉저항은 준비된 시편을 533K에서 1분 30초, 3분, 6분 간 열처리한 후, 5회 접촉저항을 측정하여 그 평균값으로 하중에 따른 금 합금 도금층의 접촉저항을 비교하였다. 솔더링성은 솔더볼을 합금 표면에 솔더페이스트를 이용하여 붙인 뒤 533K에서 30초간 열처리하고, 열처리 후 솔더볼의 높이 변화를 측정해 열처리 전 솔더볼의 높이에 비해 퍼진정도를 측정하였다. 또한, 도금층 내의 Sn함량에 따라서 접촉저항이 변화하는 요인을 분석하기 위해서 X선 광전자 분광기를 이용하여 도금층 표면의 정량 분석 및 화학적 결합상태를 분석하였다. ICP분석결과 Au-Sn합금층 내의 Sn함량은 도금용액의 조성별로 9~12wt% Sn 합금층이 형성된 것을 알 수 있었고 기존의 Au-Ni, Au-Co 합금층과 비교해 합금함량이 크게 증가된 것을 알 수 있었다. 또한 접촉저항 측정 결과, 기존의 Au-Ni, Au-Co합금층의 접촉저항과 비교했을 때 Au-Sn합금층의 접촉저항이 더 낮은 것을 알 수 있었다. 또한, 솔더퍼짐성 측정 결과 기존의 Au-Ni, Au-Co합금층과 비교해 솔더퍼짐성이 우수한 것을 확인할 수 있었다. 따라서 전자부품용 접점재료에 합금함량이 높은 Au-Sn합금층을 적용시키면 더 우수한 커넥터의 성능을 얻을 수 있을 뿐 아니라 경제적으로 큰 절약 효과를 기대할 수 있을 것으로 판단된다.

  • PDF

Changes of Properties and Gas Components according to Accelerated Aging Test of Vegetable Transformer Oil (식물성 절연유의 가속열화에 따른 주요 성분 및 물성 변화)

  • Lee, Donmin;Lee, Mieun;Park, Cheonkyu;Ha, Jonghan;Park, Hyunjoo;Jun, Taehyun;Lee, Bonghee
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.18-26
    • /
    • 2016
  • Mineral oil is the most widely used for electrical transformer, though some factors should be considered such as their environmentally harmfulness when it spill and low flash point. To cover these disadvantages, vegetable oil has developed because of its high biodegradability and thermal stability. However, it is necessary that many studies should conduct to reveal the detailed impacts of long-term operation as transformer oil. In this paper, we applied the accelerated aging test which simulate the real transformer circumstances using insulation paper, coil, steel at $150^{\circ}C$, which is higher than normal operation, for 2 weeks. To figure out the oxidation characteristics between mineral oil and vegetable oil test major properties and components such as total acid number, dielectric breakdown and dissolved gas components during that period. As a result of these tests, we found that vegetable oil has higher electric insulation ability than mineral oil though poor total acid number by hydrophile property. Vegetable oil also kept its thermal stability under the given circumstances.

Effects of Freshwater Flooding on Properties of CSPE with Number of Dried-Days (건조일수에 따른 CSPE의 특성에 미치는 담수침지의 영향)

  • Kang, Myeong-Kyun;Lee, Jung-Hoon;Lee, Seung-Hoon;Jeon, Jun-Soo;Park, Young;Park, Ki-Yub;Jeong, Kyu-Won;Shin, Yong-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.597-601
    • /
    • 2013
  • The accelerated thermal aging of a CSPE were carried out for 0, 80.82, 161.63 days at $100^{\circ}C$, which are equal to 0, 40 and 80 years of aging at $50^{\circ}C$, respectively. The volume electrical resistivities of the seawater and freshwater flooding were measured through 3-terminal circuit diagram. The volume electrical resistivities of the 0y, 40y and 80y were $2.454{\times}10^{13}{\sim}1.377{\times}10^{14}{\Omega}{\cdot}cm$, $1.121{\times}10^{13}{\sim}7.529{\times}10^{13}{\Omega}{\cdot}cm$ and $1.284{\times}10^{13}{\sim}8.974{\times}10^{13}{\Omega}{\cdot}cm$ at room temperature, respectively. The dielectric constant of the 0y, 40y and 80y were 2.922~3.431, 2.613~3.285 and 2.921~3.332 at room temperature, respectively. It is certain that the ionic ($Na^+$, $Cl^-$, $Mg^{2+}$, ${SO_4}^{2-}$, $Ca^{2+}$, $K^+$) conduction current was formed by the salinity of the seawater. The volume electrical resistivity of the cleaned CSPE via freshwater trends slightly upward with the number of dried days at room temperature. As a result, the $CH_2$ component of thermally accelerated aged CSPE decreased after seawater and freshwater flooding for 5 days respectively, whereas the atoms such as Cl, O, Pb, Al, Si, Sb, S related with the conducting ion ($Na^+$, $Cl^-$, $Mg^{2+}$, ${SO_4}^{2-}$, $Ca^{2+}$, $K^+$) component increased relatively.

A Study on the Properties of CSPE According to Accelerated Thermal Aging Years

  • Lee, Jung-Hoon;Kang, Myeong-Kyun;Jeon, Jun-Soo;Lee, Seung-Hoon;Kim, In-Yong;Park, Hyun-Shin;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.643-648
    • /
    • 2014
  • The accelerated thermal aging of CSPE (chlorosulfonated polyethylene) was carried out for 40.41, 121.22, and 202.04 days at $100^{\circ}C$, which are equivalent to 20, 60, and 100years of aging at $50^{\circ}C$, respectively. The volume electrical resistivities of the accelerated thermally aged CSPE samples for 0, 40.41, 121.22, and 202.04 days were $1.107{\times}10^{14}-2.097{\times}10^{14}$, $7.752{\times}10^{13}-1.556{\times}10^{14}$, $7.693{\times}10^{13}-1.521{\times}10^{14}$, and $7.380{\times}10^{13}-1.304{\times}10^{14}{\Omega}{\cdot}cm$, respectively, at room temperature. The permittivities of the accelerated thermally aged CSPE samples for 0, 40.41, 121.22, and 202.04 days were $2.89{\times}10^{-11}-3.65{\times}10^{-11}$, $3.40{\times}10^{-11}-3.70{\times}10^{-11}$, $3.50{\times}10^{-11}-3.82{\times}10^{-11}$, and $3.76{\times}10^{-11}-4.13{\times}10^{-11}$ F/m, respectively, at room temperature. The EAB (elongation at break) of the accelerated thermally aged CSPE samples for 0, 40.41, 121.22, and 202.04 days were 98.8-101.3, 59.5-60.3, 37.8-39.2, and 41.8-44.3%, respectively, at room temperature. The apparent densities of the accelerated thermally aged CSPE samples for 0, 40.41, 121.22, and 202.04 days were 1.603-1.614, 1.611-1.613, 1.622-1.628, and $1.618-1.620g/cm^3$, respectively, at room temperature. The measured currents of the accelerated thermally aged CSPE and the standard sample were almost constant after 5 min of applying a 300-V/mm electric field to the CSPE. The V-I slope of the accelerated thermally aged CSPE sample was increased if the applied electric field was increased at room temperature, and the V-I slope of the accelerated thermally aged CSPE was higher than that of standard CSPE.

The Effect of the Crystalline Phase of Zirconia for the Dehydration of Iso-propanol (이소프로판올의 탈수반응에서 지르코니아 촉매의 결정상에 따른 영향)

  • Sim, Hye-In;Park, Jung-Hyun;Cho, Jun Hee;Ahn, Ji-Hye;Choi, Min-Seok;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.208-213
    • /
    • 2013
  • Zirconium hydroxide was synthesized by varying the aging time of the zirconyl chloride octahydrate at $100^{\circ}C$ in aqueous solution and the resulting hydroxides were calcined at $700^{\circ}C$ for 6 h to obtain the crystalline $ZrO_2$. The materials used in this study were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), $N_2$-sorption, transmission electron microscopy (TEM), $NH_3$ temperature-programmed desorption ($NH_3$-TPD), $CO_2$-TPD and iso-propanol TPD analyses to correlate with catalytic activity for the dehydration of iso-propanol. The pure tetragonal $ZrO_2$ phase was obtained after 24 h aging of zirconium hydroxide and successive calcination at $700^{\circ}C$. The increase of aging time showed the production of smaller particle size $ZrO_2$ resulting that the higher specific surface area and total pore volume. $NH_3$-TPD results revealed that the relative acidity of the catalysts increased along with the increase of aging time. On the other hand, the results of $CO_2$-TPD showed the reverse trend of $NH_3$-TPD results. The best catalytic activity for the dehydration of iso-propanol to propylene was shown over $ZrO_2$ catalyst aged for 168 h which had the highest $S_{BET}$ ($178\;m^2\;g^{-1}$). The catalytic activity could be correlated with high surface area, relative acidity and easy desorption of iso-propanol.

Effect of V additions on the thermal stability of mechanically alloyed AI-alloys (기계 합금화한 AI-Ti합금의 열적 안정성에 미치는 V첨가의 영향)

  • O, Jun-Yeong;Park, Chi-Seung;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.483-490
    • /
    • 1994
  • The effect of vanadium additions on the thermal stability of Al-TI alloy \vas investigated. Al- 8wt.%Ti and Al-8wt.%(Ti+V) alloys wirh different Ti to V atomic ratios of 3 : 1 and 1 : 1 were pre- pared by mechanical alloying. The steady states wwe obtalncd after mechanical alloy~ng for ltihours for all the alloy compositions. The mechanically alloyed powders were consolidaicd by vacuum hot pressing and thermal st.ability was investigated by hardness testing afrcr aging thc specimens at $400^{\circ}C$, $480^{\circ}C$, $550^{\circ}C$ for up to 1000hrs. It was confirmed that addit~on of V- increased the thermal stability of Al-Ti alloy by reducing coarsening rate of $Ai_{3}Ti$ intermetallic compound.

  • PDF