• Title/Summary/Keyword: Thermal Acclimation

Search Result 16, Processing Time 0.019 seconds

Acclimation temperature influences the critical thermal maxima (CTmax) of red-spotted grouper

  • Rahman, Md Mofizur;Lee, Young-Don;Baek, Hea Ja
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.7
    • /
    • pp.235-242
    • /
    • 2021
  • The present study investigated the critical thermal maxima (CTmax) of red-spotted grouper, Epinephelus akaara under different acclimation temperatures (Tacc). Fish were acclimated at 24℃, 28℃, and 32℃ water temperature for 2 weeks. Water temperature was increased at a rate of 1℃/h and CTmax level was measured following the critical thermal methodology (Paladino et al., 1980). The results showed that CTmax values of E. akaara were 35.61℃, 36.83℃, and 37.65℃ for fish acclimated at 24℃, 28℃, and 32℃, respectively. The acclimation response ratio (ARR) was 0.26. The CTmax values were significantly correlated with body size. Collectively, it is said that the CTmax value of red-spotted grouper can be affected by different adaptation temperature (24℃, 28℃, and 32℃) and the fish acclimated to a higher temperature has a higher CTmax level. Besides, the CTmax value of 35.61℃-37.65℃ indicating the upper thermal tolerance limit for E. akaara under different Tacc (24℃, 28℃, and 32℃). Understanding the thermal tolerance of E. akaara is of ecological importance in the conservation of this species.

Characteristics of Antifreeze Protein-1 Induced during Low Temperature Acclimation in the Protaetia brevitarsis (Coleoptera; Cetonidae) Larva

  • Hyung Chul Lee;Chong Myung Yoo
    • Animal cells and systems
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 1999
  • Change of proteins was confirmed during low temperature acclimation of overwintering larva, and some biochemical characteristics of the induced antifreeze protein-1 (AFP-1) were investigated in Protaetia brevitarsis. As the freezing point depression by the action of induced AFPs, a considerable thermal hysteresis was observed in the haemolymph and in partially purified proteins. AFP-1 was purified from the cold acclimation larvae by ammonium sulfate precipitation ion exchange chromatography, gel permeation chromatography, and electroelution. The purified AFP-1 was determined to be a glycoprotein (approximately 320 kDa, pl 5.8) composed of a single type of subunit (80 kDa). The high contents of hydrophilic amino acids (Asp, Glu, Lys, Asn, Gln, Arg, Ser, Thr) were also confirmed, showing similarity with antifreeze proteins from other insects.

  • PDF

Metabolic Elasticity and Induction of Heat Shock Protein 70 in Labeo rohita Acclimated to Three Temperatures

  • Das, T.;Pal, A.K.;Chakraborty, S.K.;Manush, S.M.;Chatterjee, N.;Apte, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1033-1039
    • /
    • 2006
  • The metabolic response of Labeo rohita to thermal acclimation was assessed. Advanced fingerlings of L. rohita (average weight $31{\pm}1.4g$) were acclimated to 31, 33 and $36^{\circ}C$ compared with ambient temperatures ($26^{\circ}C$) for 30 days and different enzymes associated with stress response were estimated. Glycolytic enzyme-Lactate dehydrogenase, (LDH, E.C.1.1.1.27), TCA cycle enzyme-Malate dehydrogenase (MDH, E.C.1.1.1.37), Protein metabolizing enzymes-Aspartate amino transferase (AST, E.C.2.6.1.1) and Alanine amino transferase (ALT, E.C.2.6.1.2) of liver, gill and muscle, Gluconeogenic enzymes-Fructose 1,6 Bi phosphatase (FBPase, E.C. 3.1.3.11) and Glucose 6 phosphatase (G6Pase, E.C. 3.1.3.9) of liver and kidney were significantly (p<0.05) different with increasing acclimation temperatures. Heat Shock Protein-70 (HSP-70) was expressed in increasing intensity at 31, 33 and $36^{\circ}C$ but was not expressed at $26^{\circ}C$. Results suggest that higher acclimation temperatures enhance metabolism and L. rohita maintains homeostasis between $26-36^{\circ}C$ via an acclimation episode. Such adaptation appears to be facilitated by resorting to gluconeogenic and glycogenolytic pathways for energy mobilization and induction of HSPs.

Ethanol Production from the Seaweed Gelidium amansii, Using Specific Sugar Acclimated Yeasts

  • Cho, Hyeyoung;Ra, Chae-Hun;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.264-269
    • /
    • 2014
  • For the production of ethanol from seaweed as the source material, thermal acid hydrolysis and enzymatic saccharification were carried out for monosugars production of 25.5 g/l galactose and 7.6 g/l glucose using Gelidium amansii. The fermentation was performed with Pichia stipitis KCTC 7228 or Saccharomyces cerevisiae KCCM 1129. When wild P. stipitis and S. cerevisiae were used, the ethanol productions of 11.2 g/l and 6.9 g/l were produced, respectively. The ethanol productions of 16.6 g/l and 14.6 g/l were produced using P. stipitis and S. cerevisiae acclimated to high concentration of galactose, respectively. The yields of ethanol fermentation increased to 0.5 and 0.44 from 0.34 and 0.21 using acclimated P. stipitis and S. cerevisiae, respectively. Therefore, acclimation of yeasts to a specific sugar such as galactose reduced the glucose-induced repression on the transport of galactose.

Studies on the Change of Biochemical Components during Wintering and Thawing Periods and Cold Hardiness of Mulberry(Morus) (월동 및 해동기 뽕나무의 생화학적 물질의 변동과 내동성과의 관계)

  • Choe, Yeong-Cheol;Ryu, Geun-Seop;An, Yeong-Hui
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • In relations to cold acclimation, experiment was carried out to understand the seasonal changes in reserve substances of the mulberry. The shoot barks and leaves of three mulberry varieties(Kaeryangppong, Shinilppong and Yongcheonppong) were sampled, after that their reserve substances were analyzed. The cold hardiness of mulberry was investigated by DTA(Differential Thermal Analysis) method. To increase cold hardiness, gibberellin(100 ppm), kinetin(100 ppm) and Jambi 8 were sprayed on the mulberry leaves. After spraying, falling of the leaves of Yongcheonppong occured earier than the other varities. After the first frost, all of treatments except gibberellin were entirely fallen. Growth regulator extended the leaves fallen. After spraying, water of the shoot barks was not showed difference in the content among the treatments, but amino acid, carbohydrate and soluble protein increased from September to October. Starch content of the shoot barks and leaves was maximum in October, but thereafter decreased during wintering stage. In Shinilppong, Jambi 8 spray increased cold hardiness by 1-2$^{\circ}C$ more than no spray. It was concluded that the cold hardiness of the mulberry in midwinter is closely related to the reserve substances with spraying Jambi 8 on the mulberry leaves.

  • PDF

Thermal Acclimative Changes in the Different Lipid Fractions Composition of Fat Body of Eri-Silkworm, Philosamia Ricini (Ward.)

  • Singh, G.B.;Singh, M.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2002
  • Present communication deals with quantitative determination of total lipid, triglycerides, total free fatty acids, phospholipids and total cholesterol in the fat body tissue of the silkworm adapted to low and high temperatures. At the end of spinning process is characterized by a marked cellular reorganization of the different lipid fraction of the fat body irrespective of thermal acclimation. Accordingly, the per cent composition of triglycerides of the total lipid is increased accompanied by a corresponding decrease in free fatty acids, phospholipids and cholesterol.

Environmental stress-related gene expression and blood physiological responses in olive flounder (Paralichthys olivaceus) exposed to osmotic and thermal stress

  • Choi, Cheol-Young
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • We isolated warm temperature acclimation-related protein 65-kDa (Wap65) cDNA from the liver of olive flounder and investigated the mRNA expression of Wap65 and HSP70 in olive flounder exposed to osmotic (17.5, 8.75, and 4 psu) and thermal stress (25 and $30^{\circ}C$). The mRNA expression of Wap65 and HSP70 was increased by thermal stress. The mRNA expression of HSP70 was also increased by osmotic stress, whereas no significant change in Wap65 expression was detected. These results indicate that Wap65 mRNA expression occurs specifically in response to increases in water temperature, but not in response to osmotic stress. Plasma cortisol levels were also increased by osmotic and thermal stress. We also utilized the stress hormone cortisol to examine whether Wap65 expression is thermal-stress-specific. Cortisol treatment increased HSP70 mRNA expression in vitro, but had no significant effect on Wap65 mRNA expression. Thus, thermal stress, but not osmotic stress, induces Wap65 expression.

Critical Thermal Maximum (CTM) of Cultured Black Rockfish, Sebastes schlegeli

  • Kim Wan-Soo;Yoon Seong-Jin;Gil Joon-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.2
    • /
    • pp.59-65
    • /
    • 2003
  • The critical thermal maximum (CTM) of black rockfish, Sebastes schlegeli, was evaluated. Black rockfish were acclimated at $24^{\circ}C$, and then exposed to temperatures from 24 to $33^{\circ}C$. Black rockfish were kept in constant darkness and subjected to a gradual temperature increase $(1 ^{\circ}C\;12^{-1})$. The oxygen consumption rate (OCR) was measured using an automatic intermittent­flow-respirometer (AIFR) during the exposure period (from 119.3 to 143.5 h). The OCR increased from 94.5 to 214.2mL $O_2 kg^{-1}\;ww\;h^{-1}$ as the temperature rose from 24 to $29.4-30.9^{\circ}C$. Subsequently, the OCR increased abruptly, reaching 245.8-412.7mL $O_2 kg^{-1}\;ww\;h^{-1}$ at $32^{\circ}C$. This study suggests that the CTM for black rockfish is $29.4-30.9^{\circ}C$ when temperature is increased at $1^{\circ}C\;12h^{-1}$ following acclimation at $24^{\circ}C$.

Evaluation of Erythrocyte Morphometric Indices in Juvenile Red Spotted Grouper, Epinephelus akaara under Elevated Water Temperature

  • Rahman, Md Mofizur;Baek, Hea Ja
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.345-353
    • /
    • 2019
  • Higher thermal exposure can influence the blood cell morphology and count. Hence, based on the previous results (Rahman et al., 2019), the present study evaluated the morphometric indices of erythrocytes and their nucleus under different water temperatures (25℃, 28℃, 31℃, and 34℃) to investigate their use as an indicator of thermal stress in red spotted grouper, Epinephelus akaara. 180 healthy specimens of E. akaara were exposed to four temperature conditions (25℃ as control, 28℃, 31℃, and 34℃) for 42 days, following 2 weeks of acclimation at 25℃. Erythrocyte major axis (EL), erythrocyte minor axis (EW), nucleus major axis (NL), and nucleus minor axis (NW) were examined from the blood smears on each sampling day (i.e., 2, 7, and 42 days of thermal exposure). EL and NL were significantly decreased, whereas EW and NW were increased at higher water temperature (31℃ and 34℃). The major-minor axis proportions of erythrocytes and their nucleus (EL/EW; NL/NW) were decreased with increasing water temperature (31℃ and 34℃). The strong relationships were observed among the morphometric indices of erythrocytes and their nucleus, especially in EL vs. NL and EW vs. NW. This study reveals that elevated water temperature (31℃ and 34℃) can influence the major and minor axis morphometry of erythrocytes and their nucleus in red spotted grouper. These indices may be used as stress indicators to monitor the health status of E. akaara and probably for other fish species.

Serum Enzyme and Isozyme Activities of Rats Acclimated to Cold Environment (寒冷環境에 순화시킨 흰쥐의 血淸酵素 및 同位酵素의 活性)

  • 정애순;남상열
    • The Korean Journal of Zoology
    • /
    • v.29 no.2
    • /
    • pp.107-120
    • /
    • 1986
  • The activities of serum of serum lactate dehydrogenase (SLDH), serum alkaline phosphatase (SALP), serum creatine phosphokinase (SCPK), and their isozymes were determined in adult male Sprague-Dawley rats acclimated to cold environment $(4\\pm1^\\circC)$ for 36 days. The SLDH activity was significantly higher in the early stage of acclimated period. The steady state of SLDH activity seemed to be reached by the end of acclimated period. Electrophoretic separation of serum of control rat showed three SLDH isozymes. Isozymes SLDH4 and SLDH5 appeared most prominently, whereas only trace of SLDH1 or SLDH2 was found. The increase in SLDH level during acclimation to cold environment is a reflection of an immediate increase in the SLDH1, SLDH2, and SLDH3 type of SLDH isozyme. The acclimation to cold environment increased significantly level of SALP in the early state of acclimated period. SALP activity showed a attaining steady state with the resting level after transient rise. Electrophoretic separation of SALP of control rats showed the SALP1 and SALP2 fractions. The transient rise in SALP activity of rats acclimated to cold environment coincided with a transient rise in SALP1 fraction. Immediately after exposure to cold environment, there was significant elevation in SCPK activity. Value returned to normal after transient rise. A new steady state of SCPK activity seemed to be reached by 36 days. It may be inferred from the above data that thermal compensation appears to result from a change in the activity of an enzyme and that the SLDH, SLDH-isozyme, SALP-isozyme, and SCPK may be involved directly or indirectly in thermoregulation during acclimation to cold environment.

  • PDF