• 제목/요약/키워드: Therapeutic potential

검색결과 2,305건 처리시간 0.028초

Marine Microalgal Transgenesis: Applications to Biotechnology and Human Functional Foods

  • Kim, Young Tae
    • 한국해양바이오학회지
    • /
    • 제1권1호
    • /
    • pp.34-39
    • /
    • 2006
  • Molecular biology and microalgal biotechnology have the potential to play a major role in improving the production efficiency of a vast variety of products including functional foods, industrial chemicals, compounds with therapeutic applications and bioremediation solutions from a virtually untapped source. Microalgae are a source of natural products and have been recently studied for biotechnological applications. Efficient genetic transformation systems in microalgae are necessary to enhance their potential to be used for human health. A microalga such as Chlarella is a eukaryotic organism sharing its metabolic pathways with higher plants. This microalga is capable of expressing, glycosylating, and correctly processing proteins which normally undergo post-translational modification. Moreover, it can be cultured inexpensively because it requires only limited amount of sunlight and carbon dioxide as energy sources. Because of these advantages, Chlarella may be of great potential interest in biotechnology as a good candidate for bioreactor in the production of pharmaceutical and industrial compounds for human functional foods. Here, we briefly discuss recent progress in microalgal transgenesis that has utilized molecular biology to produce functional proteins and bioactive compounds.

  • PDF

Adsorption Kinetic Studies of 5-fluorouracil Molecules on Hydroxyapatite Surface

  • Yoon, Jiseol;Kwon, Ki-Young;Woo, Dong Kyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.432.1-432.1
    • /
    • 2014
  • Hydroxyapatite (Ca10(PO4)6(OH)2) is known as the main inorganic component of mature mammalian bones and teeth. Because of its biocompatibility, hydroxyapatite has attracted much attention due to its potential applications in many biomedical researches. Here, we tested a therapeutic potential for the use of hydroxyapatite as an anticancer drug delivery vector. We prepared various types of hydroxyapatite having different chemical contents and morphologies using hydrothermal synthesis. The capability of hydroxyapatite as drug delivery materials was examined by adsorption kinetics of 5-fluorouracil molecules, a common anticancer drug, in phosphate buffered saline. We find that hydroxyapatite with smaller crystal size and higher phosphate contents shows improved adsorption property. Given that hydroxyapatite provides a scaffold for bone regeneration, these results highlight a potential use of hydroxyapatite in therapies aimed at osteosarcoma.

  • PDF

Using reverse docking to identify potential targets for ginsenosides

  • Park, Kichul;Cho, Art E.
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.534-539
    • /
    • 2017
  • Background: Ginsenosides are the main ingredients of ginseng, which, in traditional Eastern medicine, has been claimed to have therapeutic values for many diseases. In order to verify the effects of ginseng that have been empirically observed, we utilized the reverse docking method to screen for target proteins that are linked to specific diseases. Methods: We constructed a target protein database including 1,078 proteins associated with various kinds of diseases, based on the Potential Drug Target Database, with an added list of kinase proteins. We screened 26 kinds of ginsenosides of this target protein database using docking. Results: We found four potential target proteins for ginsenosides, based on docking scores. Implications of these "hit" targets are discussed. From this screening, we also found four targets linked to possible side effects and toxicities, based on docking scores. Conclusion: Our method and results can be helpful for finding new targets and developing new drugs from natural products.

Transient Receptor Potential Channels and Metabolism

  • Dhakal, Subash;Lee, Youngseok
    • Molecules and Cells
    • /
    • 제42권8호
    • /
    • pp.569-578
    • /
    • 2019
  • Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.

Molecular docking study of nuciferine as a tyrosinase inhibitor and its therapeutic potential for hyperpigmentation

  • Veerabhuvaneshwari Veerichetty;Iswaryalakshmi Saravanabavan
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.43.1-43.13
    • /
    • 2023
  • Melanin is synthesized by tyrosinase to protect the skin from ultraviolet light. However, overproduction and accumulation of melanin can result in hyperpigmentation and skin melanoma. Tyrosinase inhibitors are commonly used in the treatment of hyperpigmentation. Natural tyrosinase inhibitors are often favoured over synthetic ones due to the potential side effects of the latter, which can include skin irritation, allergies, and other adverse reactions. Nuciferine, an alkaloid derived from Nelumbo nucifera, exhibits potent antioxidant and anti-proliferative properties. This study focused on the in silico screening of nuciferine for anti-tyrosinase activity, using kojic acid, ascorbic acid, and resorcinol as standards. The tyrosinase protein target was selected through homology modeling. The residues of the substrate binding pocket and active site pockets were identified for the purposes of grid box optimization and docking. Therefore, nuciferine is a potent natural tyrosinase inhibitor and shows promising potential for application in the treatment of hyperpigmentation and skin melanoma.

Guided Selection of Human Antibody Light Chains against TAG-72 Using a Phage Display Chain Shuffling Approach

  • Kim, Sang-Jick;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • 제45권6호
    • /
    • pp.572-577
    • /
    • 2007
  • To enhance therapeutic potential of murine monoclonal antibody, humanization by CDR grafting is usually used to reduce immunogenic mouse residues. Most humanized antibodies still have mouse residues critical for antigen binding, but the mouse residues may evoke immune responses in humans. Previously, we constructed a new humanized version (AKA) of mouse CC49 antibody specific for tumor-associated glycoprotein, TAG-72. In this study, to select a completely human antibody light chain against TAG-72, guided selection strategy using phage display was used. The heavy chain variable region (VH) of AKA was used to guide the selection of a human TAG-72-specific light chain variable region (VL) from a human VL repertoire constructed from human PBL. Most of the selected VLs were identified to be originated from the members of the human germline VK1 family, whereas the VL of AKA is more homologous to the VK4 family. Competition binding assay of the selected Fabs with mouse CC49 suggested that the epitopes of the Fabs overlap with that of CC49. In addition, they showed better antigen-binding affinity compared to parental AKA. The selected human VLs may be used to guide the selection of human VHs to get completely human anti-TAG72 antibody.

TRAIL in Combination with Subtoxic 5-FU Effectively Inhibit Cell Proliferation and Induce Apoptosis in Cholangiocarcinoma Cells

  • Sriraksa, Ruethairat;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6991-6996
    • /
    • 2015
  • In the past decade, the incidence and mortality rates of cholangiocarcinoma (CCA) have been increasing worldwide. The relatively low responsiveness of CCA to conventional chemotherapy leads to poor overall survival. Recently, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) has emerged as the most promising anti-cancer therapeutic agent since it is able to selectively induce apoptosis of tumor cells but not normal cells. In this study, we aimed to investigate the therapeutic effect of TRAIL in CCA cell lines (M213, M214 and KKU100) compared with the immortal biliary cell line, MMNK1, either alone or in combination with a subtoxic dose of 5-fluorouracil (5-FU). We found that recombinant human TRAIL (rhTRAIL) was a potential agent which significantly inhibited cell proliferation and mediated caspase activities (caspases 8, 9 and 3/7) and apoptosis of CCA cells. The combined treatment of rhTRAIL and 5-FU effectively enhanced inhibition of CCA cell growth with a smaller effect on MMNK1. Our finding suggests TRAIL to be a novel anti-cancer therapeutic agent and advantage of its combination with a conventional chemotherapeutic drug for effective treatment of CCA.

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

Downregulated microRNAs in the colorectal cancer: diagnostic and therapeutic perspectives

  • Hernandez, Rosa;Sanchez-Jimenez, Ester;Melguizo, Consolacion;Prados, Jose;Rama, Ana Rosa
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.563-571
    • /
    • 2018
  • Colorectal cancer (CRC), the third most common cancer in the world, has no specific biomarkers that facilitate its diagnosis and subsequent treatment. The miRNAs, small single-stranded RNAs that repress the mRNA translation and trigger the mRNA degradation, show aberrant levels in the CRC, by which these molecules have been related with the initiation, progression, and drug-resistance of this cancer type. Numerous studies show the microRNAs influence the cellular mechanisms related to the cell cycle, differentiation, apoptosis, and migration of the cancer cells through the post-transcriptionally regulated gene expression. Specific patterns of the upregulated and down-regulated miRNA have been associated with the CRC diagnosis, prognosis, and therapeutic response. Concretely, the downregulated miRNAs represent attractive candidates, not only for the CRC diagnosis, but for the targeted therapies via the tumor-suppressing microRNA replacement. This review shows a general overview of the potential uses of the miRNAs in the CRC diagnosis, prognosis, and treatment with a special focus on the downregulated ones.

Effect of Rutin on Adhesion Molecules Expression and NO Production Induced by $\gamma$-irradiation in Human Endothelial cells

  • Son, Eun-Wha;Lee, Kang-Ro;Rhee, Dong-Kwon;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • 제9권3호
    • /
    • pp.156-161
    • /
    • 2001
  • Inflammation is a frequent radiation-induced following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with ${\gamma}$-irradiation (${\gamma}$IR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that bioflavonoid rutin inhibits ${\gamma}$IR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose- and time dependent manner. Rutin also inhibited ${\gamma}$IR induced production of NO. These data suggest that rutin has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules.

  • PDF