• Title/Summary/Keyword: Therapeutic Target

Search Result 948, Processing Time 0.027 seconds

Analysis of Radiation Dose on Single Cells Using Therapeutic Radioisotopes Using the Monte Carlo Method (몬테카를로 방법을 이용한 치료용 방사성동위원소 사용 시 단일 세포에 대한 선량 분석)

  • Kim, Jung-Hoon;Kim, Yu-Soo
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.433-438
    • /
    • 2022
  • Targeted radionuclides treatment (TRT) requires the establishment of treatment plans that consider various factors, such as the type of radionuclides, target organs, and administration methods. For this reason, in this study, the absorption dose of a single cell was analyzed according to the type of radioisotope used to treat target radionuclides. In this study, a simulation was performed on beta rays used in the treatment of target radionuclides at the cell level using MCNPX (ver. 2.5.0). First, according to the calculation formula, the beam path according to the type of radioisotope for treatment was calculated. Second, the amount of self-radiation by beta rays emitted from cell diameters of 5 ㎛ and 10 ㎛ cell nuclei was evaluated. As a result, it showed a high range proportional to the maximum energy of the beta-ray, and the highest self-dose distribution from 177 Lu radiation sources among therapeutic radioisotopes. This was analyzed as a result that is inversely proportional to the maximum energy of the beta-ray, and it suggests that the selection of a nuclide considering the range of the beta-ray is necessary in the treatment of target radionuclides in the future.

Pharmacodynamic principles and target concentration intervention

  • Holford, Nick
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.150-154
    • /
    • 2018
  • This tutorial reviews the principles of dose individualisation with an emphasis on target concentration intervention (TCI). Once a target effect is chosen then pharmacodynamics can predict the target concentration and pharmacokinetics can predict the target dose to achieve the required response. Dose individualisation can be considered at three levels: population, group and individual. Population dosing, also known as fixed dosing or "one size fits all" is often used but is poor clinical pharmacology; group dosing uses patient features such as weight, organ function and comedication to adjust the dose for a typical patient; individual dosing uses observations of patient response to inform about pharmacokinetic and pharmacodynamics in the individual and use these individual differences to individualise dose.

PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis

  • Kim, Juyoung;Jung, Kyung Hee;Yoo, Jaeho;Park, Jung Hee;Yan, Hong Hua;Fang, Zhenghuan;Lim, Joo Han;Kwon, Seong-Ryul;Kim, Myung Ku;Park, Hyun-Ju;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.172-183
    • /
    • 2020
  • Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.

Immunopathogenesis of childhood idiopathic nephrotic syndrome

  • Hae Il Cheong
    • Childhood Kidney Diseases
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Pediatric nephrotic syndrome (NS) is a clinical syndrome characterized by massive proteinuria, hypoalbuminemia, and generalized edema. Most childhood NS cases are idiopathic (with an unknown etiology). Traditional therapeutic approaches based on immunosuppressive agents largely support the key role of the immune system in idiopathic NS (INS), especially in the steroid-sensitive form. Although most previous studies have suggested the main role of T cell dysfunction and/or the abnormal secretion of certain glomerular permeability factors, recent studies have emphasized the role of B cells since the therapeutic efficacy of B cell depletion therapy in inducing and/or maintaining prolonged remission in patients with INS was confirmed. Furthermore, several studies have detected circulating autoantibodies that target podocyte proteins in a subset of patients with INS, suggesting an autoimmune-mediated etiology of INS. Accordingly, a new therapeutic modality using B cell-depleting drugs has been attempted, with significant effects in a subset of patients with INS. Currently, INS is considered an immune-mediated disorder caused by a complex interplay between T cells, B cells, soluble factors, and podocytes, which may vary among patients. More in-depth investigations of the pathogenic pathways of INS are required for an effective personalized therapeutic approach and to define precise targets for therapeutic intervention.

Chitosan Derivatives for Target of Specific Tissue in the Body (생체 내 특정 조직의 표적을 위한 키토산 유도체)

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.593-602
    • /
    • 2010
  • Chitosan as a natural polymer has superior physicochemical properties such as biocompatibility, biodegradability and nontoxicity, but application of chitosan for therapy of cancer and gene related-disease has been limited by poor solubility in aqueous solution. Therefore, low molecular weight water-soluble chitosan (LMWSC) with high reactivity and strong positive charge can be applied as a delivery system having function to carry in the specific tissue the bioactive material like poor solubility drug, or therapeutic gene and developed as a therapeutic system having good therapeutic efficiency. The most important factor for therapy of various diseases is to reveal the antigen or receptor expressed in specific lesion tissue and the antibody and ligand which can bind with antigen is to introduce at the biomaterials for enhancement the therapeutic efficiency. The studies for cationic synthetic polymer as drug or gene delivery have been actively performed, but it has many problems such as toxicity in the body, therapeutic efficiency. From this point of view, this article demonstrated the introduction of functional groups to target the specific tissue and therapeutic strategy using the modification of LMWSC with free-amine group. The development of these delivery system will provide a positive vision for cancer therapy.

Comprehensive Identification of Tumor-associated Antigens via Isolation of Human Monoclonal Antibodies that may be Therapeutic

  • Kurosawa, Yoshikazu
    • IMMUNE NETWORK
    • /
    • v.9 no.1
    • /
    • pp.4-7
    • /
    • 2009
  • Although the success of trastuzumab and rituximab for treatment of breast cancer and non-Hodgkins lymphoma, respectively, suggests that monoclonal antibodies(mAbs) will become important therapeutic agents against a wider range of cancers, useful therapeutic Abs are not yet available for the majority of the human cancers because of our lack of knowledge of which antigens (Ags) are likely to become useful targets. We established a procedure for comprehensive identification of such Ags through the extensive isolation of human mAbs that may be therapeutic. Using the phage-display Ab library we isolated a large number of human mAbs that bind to the surface of tumor cells. They were individually screened by immunostaining, and clones that preferentially and strongly stained the malignant cells were chosen. The Ags recognized by those clones were isolated by immunoprecipitation and identified by mass spectrometry(MS). We isolated 2,114 mAbs with unique sequences and identified 25 distinct Ags highly expressed on several carcinomas. Of those 2,114 mAbs 434 bound to specifically to one of the 25 Ags. I am going to discuss how we could select proper target Ags for therapeutic Abs and candidate clones are therapeutic agents.

A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system

  • Kim, Hee Jin;Kim, Pitna;Shin, Chan Young
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.8-29
    • /
    • 2013
  • Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng's therapeutic effects. These include Alzheimer's disease, Parkinson's disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng.

Application of Stem Cells in Targeted Therapy of Breast Cancer: A Systematic Review

  • Madjd, Zahra;Gheytanchi, Elmira;Erfani, Elham;Asadi-Lari, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2789-2800
    • /
    • 2013
  • Background: The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. Material and Method: A systematic literature search was performed for original articles published from January 2007 until May 2012. Results: Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. $Wnt/{\beta}$-catenin signaling pathway has been also evidenced to be an attractive CSC-target. Conclusions: This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.

Glyoxalase 1 as a Therapeutic Target in Cancer and Cancer Stem Cells

  • Ji-Young, Kim;Ji-Hye, Jung;Seung-Joon, Lee;Seon-Sook, Han;Seok-Ho, Hong
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.869-876
    • /
    • 2022
  • Methylglyoxal (MG) is a dicarbonyl compound formed in cells mainly by the spontaneous degradation of the triose phosphate intermediates of glycolysis. MG is a powerful precursor of advanced glycation end products, which lead to strong dicarbonyl and oxidative stress. Although divergent functions of MG have been observed depending on its concentration, MG is considered to be a potential antitumor factor due to its cytotoxic effects within the oncologic domain. MG detoxification is carried out by the glyoxalase system. Glyoxalase 1 (Glo1), the ubiquitous glutathionedependent enzyme responsible for MG degradation, is considered to be a tumor promoting factor due to it catalyzing the removal of cytotoxic MG. Indeed, various cancer types exhibit increased expression and activity of Glo1 that closely correlate with tumor cell growth and metastasis. Furthermore, mounting evidence suggests that Glo1 contributes to cancer stem cell survival. In this review, we discuss the role of Glo1 in the malignant progression of cancer and its possible use as a promising therapeutic target for tumor therapy. We also summarize therapeutic outcomes of Glo1 inhibitors as prospective treatments for the prevention of cancer.

Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease

  • Eun Yeong Lim;Eun-Ji Song;Hee Soon Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1111-1118
    • /
    • 2023
  • As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.