• Title/Summary/Keyword: Therapeutic Drug Monitoring

Search Result 62, Processing Time 0.026 seconds

Antiepileptic Drugs in Children : Current Concept

  • Lee, Jeehun
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.296-301
    • /
    • 2019
  • An epileptic seizure is defined as the transient occurrence of signs and/or symptoms due to abnormally excessive or synchronous neuronal activity in the brain. The type of seizure is defined by the mode of onset and termination, clinical manifestation, and by the abnormal enhanced synchrony. If seizures recur, that state is defined as epilepsy. Antiepileptic drugs (AEDs) are the mainstay of treatment. Knowledge about initiating and maintaining adequate AEDs is beneficial for the clinician who treats children with epilepsy. This article will delineate the general principles for selecting, introducing, and discontinuing AEDs and outline guidelines for monitoring adverse effects. In general, AED therapy following a first unprovoked seizure in children is not recommended. However, treatment should be considered after a second seizure. In children and adolescents, if they are seizure-free for at least 2 years, attempts to withdraw medication/s should be made, taking into account the risks vs. benefits for the individual patient. The decision on when and what AED to use should be tailored according to the patient. For optimal treatment, the selection of adequate AEDs can be achieved by considering the precise definition of the patient's seizure and epilepsy syndrome. Continuous monitoring of both therapeutic and adverse effects is critical for successful treatment with AEDs.

Pharmacokinetics of Phenytoin in Rabbits Pretreated with Diltiazem (딜티아젬 전처리 가토에서 페니토인의 약물동태학적 연구)

  • Park, Jung Mi;Lee, Jin Hwan;Choi, Jun Shik;Burm, Jin Pil
    • Korean Journal of Clinical Pharmacy
    • /
    • v.3 no.2
    • /
    • pp.139-145
    • /
    • 1993
  • This study was attempted to investigate the pharmacokinetics of phenytoin(4mg/kg iv,) in rabbits pretreated with diltiazem(l and 2.5mg/kg) for 7 days. The plasma concentration and area under the curve(AUC) of phenytoin were increased significantly(p<0.05) in rabbits pretreated with diltiazem(2.5mg/kg) compared with those of control rabbits. Volume of distribution and total body clearance were decreased significantly(p<0,05) in rabbits pretreated with diltiazem compared with those of control rabbits. From the results of this experiment, it is desirable that dosage ragimen of phenytoin should be adjusted and that therapeutic drug monitoring should be practiced for reduction of side or toxic effect when phenytoin will be administered with diltiazem in clinical practice.

  • PDF

Biomedicinal implications of high-density lipoprotein: its composition, structure, functions, and clinical applications

  • Cho, Kyung-Hyun
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.393-400
    • /
    • 2009
  • High-density lipoprotein (HDL) is a proven biomarker for the monitoring of changes in antioxidant and anti-inflammation capability of body fluids. The beneficial virtues of HDL are highly dependent on its lipids and protein compositions, and their ratios. In normal state, the HDL particle is enriched with lipids and several HDL-associated enzymes, which are responsible for its antioxidant activity. Lower HDL-cholesterol levels (<40 mg/dL) have been recognized as an independent risk factor for coronary artery disease, as well as being a known component of metabolic syndrome. Functional and structural changes of HDL have been recognized as factors pivotal to the evaluation of HDL-quality. In this review, I have elected to focus on the functional and structural correlations of HDL and the roles of HDL-associated apolipoproteins and enzymes. Recent clinical applications of HDL have also been reviewed, particularly the therapeutic targeting of HDL metabolism and reconstituted HDL; these techniques represent promising emerging strategies for the treatment of cardiovascular disease, for drug or gene therapy.

New Anticoagulants for the Prevention and Treatment of Venous Thromboembolism

  • Kim, Joo Hee;Lim, Kyung-Min;Gwak, Hye Sun
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.461-470
    • /
    • 2017
  • Anticoagulant drugs, like vitamin K antagonists and heparin, have been the mainstay for the treatment and prevention of venous thromboembolic disease for many years. Although effective if appropriately used, traditional anticoagulants have several limitations such as unpredictable pharmacologic and pharmacokinetic responses and various adverse effects including serious bleeding complications. New oral anticoagulants have recently emerged as an alternative because of their rapid onset/offset of action, predictable linear dose-response relationships and fewer drug interactions. However, they are still associated with problems such as bleeding, lack of reversal agents and standard laboratory monitoring. In an attempt to overcome these drawbacks, key steps of the hemostatic pathway are investigated as targets for anticoagulation. Here we reviewed the traditional and new anticoagulants with respect to their targets in the coagulation cascade, along with their therapeutic advantages and disadvantages. In addition, investigational anticoagulant drugs currently in the development stages were introduced.

Pharmacokinetic Interaction of Vancomycin and Probenecid in Rabbits (반코마이신과 프로베네시드의 약물동태학적 상호작용)

  • Lee, Do-Nil;You, Jae-Sin;Burm, Jin-Pil;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.51-56
    • /
    • 1997
  • This study was attempted to investigate the pharmacokinetic interaction of vancomycin (10 mg/kg, i.v.) and probenecid (7.5. 15, and 30 mg/kg, oral) in rabbits. The area under curve (AUC) of plasma vancomycin concentration was significantly increased (p<0.01) in rabbits when the probenecid was coadministrated. Volume of distribution (Vd) was significantly decreased (p<0.05) in rabbits coadministrated with probenecid (15 and 30 mg/kg) and total body clearance (CLt) was decreased significantly (p<0.05. p<0.01) in rabbits coadministrated with probenecid (7.5, 15 and 30 mg/kg). There was significant correlation between AUC and probenecid dose. From the results of this experiment, it is desirable to adjust dosage regimen of vancomycin for reduction of side or toxic effect when the probenecid is coadministered in clinical practice.

  • PDF

Pharmacodynamic principles and target concentration intervention

  • Holford, Nick
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.150-154
    • /
    • 2018
  • This tutorial reviews the principles of dose individualisation with an emphasis on target concentration intervention (TCI). Once a target effect is chosen then pharmacodynamics can predict the target concentration and pharmacokinetics can predict the target dose to achieve the required response. Dose individualisation can be considered at three levels: population, group and individual. Population dosing, also known as fixed dosing or "one size fits all" is often used but is poor clinical pharmacology; group dosing uses patient features such as weight, organ function and comedication to adjust the dose for a typical patient; individual dosing uses observations of patient response to inform about pharmacokinetic and pharmacodynamics in the individual and use these individual differences to individualise dose.

Ultra-fast Generic LC-MS/MS Method for High-Throughput Quantification in Drug Discovery

  • Kim, So-Hee;Yoo, Hye Hyun;Cha, Eun-Ju;Jeong, Eun Sook;Kim, Ho Jun;Kim, Dong Hyun;Lee, Jaeick
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.47-50
    • /
    • 2013
  • An ultra-fast generic LC-MS/MS method was developed for high-throughput quantification of discovery pharmacokinetic (PK) samples and its reliability was verified. The method involves a simple protein precipitation for sample preparation and the analysis by ultra-fast generic LC-MS/MS with the ballistic gradient program and selected reaction monitoring (SRM) mode. Approximately 290 new chemical entities (NCEs) (over 10,000 samples) from 5 therapeutic programs were analyzed. The calibration curves showed good linearity in the concentration range of 1, 2 or 5 to 2000 ng/mL. No significant ion suppression was observed in the elution region of all the NCEs. When approximately 300 plasma samples were continuously analyzed, the peak area of internal standard was constant and reproducible. In the repeated analysis of samples, the plasma concentrations and the area under the curve (AUC) were consistent with the results from the first analysis. These results showed that the present ultra-fast generic LC-MS/MS method is reliable in terms of selectivity, sensitivity, and reproducibility and could be useful for high-throughput quantification and other bioanalysis in drug discovery.

Effect of Voriconazole or Itraconazole on the Plasma Concentrations of Tacrolimus in Lung Transplant Recipients (폐이식 환자에서 tacrolimus와 itraconazole 혹은 voriconazole 병용 시 tacrolimus의 혈중 농도 변화에 미치는 영향)

  • Jung, Yoo Jin;Yi, Young Suk;Ahn, Ji Hyune;Son, Eun Sun;Park, Min Soo;Lee, Jangik I.;Chang, Min Jung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.26 no.4
    • /
    • pp.306-311
    • /
    • 2016
  • Objective: This study was performed to compare the changes in the blood concentrations of tacrolimus when either itraconazole or voriconazole is together with tacrolimus to prevent or treat invasive aspergillus pneumonia (IAP) in patients with lung transplants. Therefore we can compare the degree of drug-drug interactions between tacrolimus and itraconazole against tacrolimus and voriconazole. Methods: Patients who were admitted and had lung transplants in a territory referral hospital from September 2012 to May 2015 were analyzed retrospectively. The effects of itraconazole and voriconazole on the plasma concentrations of tacrolimus were analyzed. Results: Mean tacrolimus concentrations was $10.49{\pm}2.35ng/mL$ vs. $10.95{\pm}2.98ng/mL$ (p=0.722), and mean concentration of tacrolimus over the dose of tacrolimus per day was $8.510{\pm}5.890(ng/mL)/(mg/d)$ vs. $15.45{\pm}28.47(ng/mL)/(mg/d)$ (p=0.947) in itraconazole vs. voriconazole group each. The ratio of the number of the results out of target tacrolimus concentrations to the total number of tacrolimus concentration results was $18.0{\pm}13.3%$ vs. $24.4{\pm}18.5%$ (p=0.185). Conclusion: There were no significant differences between itraconzaole and voriconazole to have influences on mean concentrations of tacrolimus over tacrolimus dose per weight per day. However voriconazole tended to raise tacrolimus plasma concentrations more than itraconazole. Safer and more effective drug management to prevent and treat fungal infections should be done by therapeutic drug monitoring not only of tacrolimus but of itraconazole and voriconazole in lung transplant patients.

Role of Cerebrospinal Fluid Biomarkers in Clinical Trials for Alzheimer's Disease Modifying Therapies

  • Kang, Ju-Hee;Ryoo, Na-Young;Shin, Dong Wun;Trojanowski, John Q.;Shaw, Leslie M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.447-456
    • /
    • 2014
  • Until now, a disease-modifying therapy (DMT) that has an ability to slow or arrest Alzheimer's disease (AD) progression has not been developed, and all clinical trials involving AD patients enrolled by clinical assessment alone also have not been successful. Given the growing consensus that the DMT is likely to require treatment initiation well before full-blown dementia emerges, the early detection of AD will provide opportunities to successfully identify new drugs that slow the course of AD pathology. Recent advances in early detection of AD and prediction of progression of the disease using various biomarkers, including cerebrospinal fluid (CSF) $A{\beta}_{1-42}$, total tau and p-tau181 levels, and imagining biomarkers, are now being actively integrated into the designs of AD clinical trials. In terms of therapeutic mechanisms, monitoring these markers may be helpful for go/no-go decision making as well as surrogate markers for disease severity or progression. Furthermore, CSF biomarkers can be used as a tool to enrich patients for clinical trials with prospect of increasing statistical power and reducing costs in drug development. However, the standardization of technical aspects of analysis of these biomarkers is an essential prerequisite to the clinical uses. To accomplish this, global efforts are underway to standardize CSF biomarker measurements and a quality control program supported by the Alzheimer's Association. The current review summarizes therapeutic targets of developing drugs in AD pathophysiology, and provides the most recent advances in the clinical utility of CSF biomarkers and the integration of CSF biomarkers in current clinical trials.

Development of Vancomycin Initial Dosage Guidelines to Achieve New Target Ranges (Vancomycin 초기 투여 용량 개선 방안)

  • Yoo, Jae-Young;Kim, Jung-Hyun;Lee, Yong-Won;Kim, Eun-Yeong;Sohn, Kie-Ho
    • Korean Journal of Clinical Pharmacy
    • /
    • v.20 no.3
    • /
    • pp.221-228
    • /
    • 2010
  • In 2009, American Journal of Health-System Pharmacy (AJHP) recommended that targeting vancomycin trough concentrations of 10 mg/L or more because of therapeutic failure and potential risk of developing vancomycin resistance. Therefore, new dosage guidelines that could achieve to these higher target were needed. The aims of this study were to develop dosage guidelines targeting new vancomycin trough concentration and to evaluate the performance of these new guidelines. All data analysis were performed using NONMEM(R). Population pharmacokinetic model was first developed from vancomycin dosage and concentration data collected retrospectively during routine therapeutic drug monitoring in 441 patients, then new vancomycin dosage guidelines were developed by using the model to predict vancomycin trough and peak concentrations in a simulated dataset. The estimates, such as, vancomycin concentration trough level, time to achieve target level, mean error were performed to evaluate and compare difference between conventional dosage and new dosage guidelines. The proposed dosage guidelines were predicted to achieve 43.5% of vancomycin trough level within 10~20 mg/L, which is significantly higher than current guidelines (26.3%). Time to achieve target trough level was 19.4 hours in new guidelines comparing to 93.1 hours in the conventional dosage. Thus, new vancomycin dosage guidelines have been developed to achieve new target trough concentrations earlier and more consistently than conventional guidelines.