• Title/Summary/Keyword: Theoretical study

Search Result 12,752, Processing Time 0.043 seconds

A Study on D.D.I. Load for Forming of the CNG Storage Vessel (CNG 저장용기의 성형을 위한 D.D.I. 하중에 관한 연구)

  • Lee, Hyun Woo;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.629-637
    • /
    • 2013
  • In this study, a theoretical analysis method was suggested for predicting forming loads of continuous deep drawing and ironing processes (D.D.I. processes) by considering back tension and continuity equation, and FEA for D.D.I. processes was performed. Dimensions of a punch and a mold on the basis of design rules for a CNG storage vessel were applied for the analysis. To verify the suggested theoretical analysis, the results of theoretical analysis were compared with both those of FEA and experiments of previous studies. As the result of analysis, the values and tendencies of the loads predicted by the theoretical analysis were in agreement with those of FEA and the experiments. So, it is considered that the analysis suggested has reliability for predicting the forming loads of the continuous processes(deep drawing+ironing(1)+ironing(2)).

Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank (안전주입탱크의 재충수 단계 유동에 대한 이론해석)

  • Park, Jun Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.675-683
    • /
    • 2017
  • In this study, a theoretical analysis was performed to the flow of refilling stage in a safety injection tank, which is the core cooling system of nuclear power plant in an emergency. A theoretical model was proposed with a nonlinear governing equation defining on the flow of the refilling process of the coolant. Utilizing the Taylor-series expansion, the $1^{st}$ - order approximation flow equation was obtained, along with its analytic solution of closed type, which could predict accurately the variations of free surface height and flow rate of the coolant. The availability of theoretical result was confirmed by comparing with previous experimental results.

A Study on the Interior Design Process as Creativite Thinking (창조적 사고체계로서의 실내디자인 과정에 관한 연구)

  • 이선민
    • Korean Institute of Interior Design Journal
    • /
    • no.13
    • /
    • pp.60-71
    • /
    • 1997
  • A study was performed for combination active process between the academical theory and practical design process based on creative thinking process in interior desigv. At first, it was investigated the concepts and characteristics of creativity combined with creativite process of thinking, and also scientific and art characteristics on interior design to be educated together with logical and esthetical concepts required for creative thinking process. In reference with above process, it was systematically established stepwise process of interior design with creative thinking system. As a resualt, creativity in interior design could develop a unique design process combined informations about knowledge and experiences with actual acquirements by individual's experiences. So interior design could be approachable and developed with open-mind and consistently scientific methodology. Also creativity power of interior design could be solved by strategic knowledge acquired by practical experiences and problem solving capability in special branches. Like this, all design activities, including interior design, would be accomplished theoretical background and actual design process under the concepts of practical intension and use. So it would be made creative products by means of detail adapation process based on the theoretical atmosphere, therefore it'll be strongly based on the hardnessing of theoretical value and power. Theory for design process referred to environmental concepts, so including interior design, would not be terminated as for theoretical concepts but be responsible for future of well-developed design by accomplishment of various design adaption method for practical purpose and objectives.

  • PDF

Theoretical and experimental study on load-carrying capacity of combined members consisted of inner and sleeved tubes

  • Hu, Bo;Gao, Boqing;Zhan, Shulin;Zhang, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.129-144
    • /
    • 2013
  • Load-carrying capacity of combined members consisted of inner and sleeved tubes subjected to axial compression was investigated in this paper. Considering the initial bending of the inner tube and perfect elasto-plasticity material model, structural behavior of the sleeved member was analyzed by theoretic deduction, which could be divided into three states: the elastic inner tube contacts the outer sleeved tube, only the inner tube becomes plastic and both the inner and outer sleeved tubes become plastic. Curves between axial compressive loads and lateral displacements of the middle sections of the inner tubes were obtained. Then four sleeved members were analyzed through FEM, and the numerical results were consistent with the theoretic formulas. Finally, experiments of full-scale sleeved members were performed. The results obtained from the theoretical analysis were verified against experimental results. The compressive load-lateral displacement curves from the theoretical analysis and the tests are similar and well indicate the point when the inner tube contacts the sleeved tube. Load-carrying capacity of the inner tube can be improved due to the sleeved tube. This paper provides theoretical basis for application of the sleeved members in reinforcement engineering.

Theoretical formulation of double scalar damage variables

  • Xue, Xinhua;Zhang, Wohua
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.501-507
    • /
    • 2017
  • The predictive utility of a damage model depends heavily on its particular choice of a damage variable, which serves as a macroscopic approximation in describing the underlying micromechanical processes of microdefects. In the case of spatially perfectly randomly distributed microcracks or microvoids in all directions, isotropic damage model is an appropriate choice, and scalar damage variables were widely used for isotropic or one-dimensional phenomenological damage models. The simplicity of a scalar damage representation is indeed very attractive. However, a scalar damage model is of somewhat limited use in practice. In order to entirely characterize the isotropic damage behaviors of damaged materials in multidimensional space, a system theory of isotropic double scalar damage variables, including the expressions of specific damage energy release rate, the coupled constitutive equations corresponding to damage, the conditions of admissibility for two scalar damage effective tensors within the framework of the thermodynamics of irreversible processes, was provided and analyzed in this study. Compared with the former studies, the theoretical formulations of double scalar damage variables in this study are given in the form of matrix, which has many features such as simpleness, directness, convenience and programmable characteristics. It is worth mentioning that the above-mentioned theoretical formulations are only logically reasonable. Owing to the limitations of time, conditions, funds, etc. they should be subject to multifaceted experiments before their innovative significance can be fully verified. The current level of research can be regarded as an exploratory attempt in this field.

Theoretical and Experimental Evaluation of R502 Alternatives in Low Temperature Applications (저온용 R502 대체 냉매의 이론 및 실험적 평가)

  • Kwon, S.L.;Park, Y.B.;Jung, D.S.;Kim, C.B.;Kang, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.654-666
    • /
    • 1995
  • R502 has been extensively used as a working fluid in transport refrigerating vehicles and low temperature refrigerating machines but is to be phased out by the end of 1995 due to ozone layer depletion problem. In this study, both theoretical cycle analysis and experiments were carried out to examine the best substitutes for R502. Theoretical results indicate that the alternatives available in the market today may replace R502 without significant changes in the system without suction line heat exchanger(SLHX). When the system contains a SLHX, however, COPs of the alternatives increase up to approximately 15~20% than those without the SLHX. But simultaneously, the discharge temperatures of the compressor also increrease significantly with the SLHX. Actual test results obtained from the experiment with a transport vehicle's refrigerator indicate the similar trend as those of the theoretical results. Especially, HFCs and their mixtures show lower discharge temperature than those of R502, which is one of the desirable features. Further research is needed to study the effect of the SLHX on the performance of the real machine as well as on the oil return for reliability of the system.

  • PDF

Evaluate of high solid manure characteristics and theoretical methane potential in domestic (국내 고상가축분뇨 특성 및 이론적 메탄 잠재성에 대한 평가)

  • Choi, Yongjun;Lee, Sangrak
    • Journal of Animal Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • This study was conducted to establish a database of high solid manure(HSM) in domestic. Theoretical methane potential and HSM characteristics was evaluated using breef and dairy manure (n=156). Total solids and Volatile solids of HSM increased depending on time flow, the results showed $20.4{\pm}3.2$ and $17.4{\pm}2.8%$. respectively. C/N ratio of breef HSM was higher than dairy HSM C/N ratio. In theoretical methane potential, the result of breef and dairy HSM was showed $505.2{\pm}25.3$ and $493.5{\pm}20.2$, respectively. Nitrogen content of total HSM increased depending on time flow, the result of breef and dairy nitrogen content was showed $1.9{\pm}0.3$ and $2.8{\pm}0.2$, respectively. Carbon content of total HSM showed approximately 10% reduction. The optimal time of bed replacement was indicated between 29 amd 31 days based on the optimal C/N ratio. Therefore, this study was considered that it has high utilization for livestock manure recycling and basis of relevant research.

Wind turbulence characteristics over an industrial landscape in neutral atmospheric conditions

  • Petr Michalek;Stanislav Pospisil;Pavel Sedlak
    • Wind and Structures
    • /
    • v.39 no.2
    • /
    • pp.111-123
    • /
    • 2024
  • The atmospheric turbulence characteristics measured at a meteorological station in northwest part of the Czech Republic are presented for selected time periods in the year 2017. The terrain of this region is influenced by surface coal mining and the related industry. The datasets used in this study were measured using four ultrasonic anemometers installed on an 80 m high meteorological mast at heights of 20, 40, 60 and 80 m, respective. From the primary high-frequency datasets, time intervals in order of hours were selected and integral turbulence characteristics (ITCs), turbulence intensities and turbulence spectra were analyzed. The time intervals were selected with respect to atmospheric stability parameter, known as Obukhov number. We concentrated on the days with higher wind velocity and neutral atmospheric stratification. The wind characteristics investigated in this study include the wind speed, wind direction and its histograms, turbulence intensity, friction velocity and wind power spectra. The ITCs and spectral characteristics were compared with the theoretical models and values from the literature. The resulting ITCs showed the values for urban locations similar to those found in other studies and can be used in practical design. The computed turbulence spectra followed the shape of theoretical spectra of turbulence for both horizontal and vertical velocity components. The computed integral length scales have shown to be unsuitable for further use due to their highly scattered values.

A Study on the Fabrication Process and Melt Infiltration of Salt Core in Squeeze Casting Method (스퀴즈캐스팅용 Salt Core의 제조 및 용탕침투성에 관한 연구)

  • Kim, Ki-Bae;Noh, Sang-Woo;Lee, Ho-In;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.402-410
    • /
    • 1997
  • Developing a salt core for squeeze casting process, two different salt cores(pure salt core and mixed salt core) were fabricated and investigated. Pure salt core was composed of 100% NaCl and mixed salt core was made by mixtures of NaCl with MgO(1%), $Na_2B_4O_7$(2%), and talc(1%) as a binder or a strengthening agent. Salt cores were compacted to various theoretical density, heat treated, and then squeeze-cast with molten Al alloy(AC8A). The compression strength of salt cores were measured and the squeeze-cast products were examined for shape retention, infiltration of molten metal into the cores, and microstructures. The shape of salt core compacted at above 75% of the theoretical density was maintained stably. The higher theoretical density of salt cores gave higher compression strength, and the compression strength of mixed salt core was higher than that of pure salt core. Namely at 90% theoretical density, the compression strength of mixed salt core was $6.3 kg/mm^2$, compared to $4.6 kgmm^2$ for pure salt core. At a squeeze casting pressure of $1000 kg/cm^2$, molten Al alloy was infiltrated into pure salt core of under 85% of the theoretical density. At squeeze casting pressure of $1000 kg/cm^2$, only mixed salt core above 90% of the theoretical density were valid, but the shape of the core was altered in the case of pure salt core at 90% of theoretical density. A key factor for developing a salt core for squeeze casting process was estimated as the ultimate compressive strength of salt core.

  • PDF

A Comparative Study of Numerical and Theoretical Predictions of Oil Outflows from Damaged Ships (손상 선박 기름 유출량 추정을 위한 수치해석과 이론식의 비교 연구)

  • Yo-Seop, Moon;Je-In, Kim;Il-Ryong, Park;Seong-Bu, Suh;Seung-Guk, Lee;Hyuek-Jin, Choi;Sa-Young, Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.400-412
    • /
    • 2022
  • This paper provides the results of numerical and theoretical predictions of oil outflows from damaged single-hull and double-hull ships.Theoretical equations derived from the unsteady Bernoulli equation and a CFD method for multi-phase flow analysis were used to estimate the oil outflow rate from cargo tank. The predicted oil outflow rate from a single-hull cargo tank damaged due to grounding and collision accidents showed a good agreement with the available experimental results in both numerical and theoretical analyses. However, in the case of the double-hull conditions, the time variation of the amount of water and oil mixture inside the ballast tank predicted by the theoretical equation showed some different behavior from the numerical results. The reason was that the interaction of the oil flow with the water inflow in the ballast tank was not reflected in the theoretical equations. In the problems of the initial pressure condition in the cargo and ballast tanks, the oil outflow and water inflow were delayed at the pressure condition that the tanks were sealed. When the flow interaction between the oil and water in the ballast tank was less complicated, the theoretical and the numerical results showed a good agreement with each other.